在大一「計算機概論」課程中,學生在學習 C 語言時面臨諸多挑戰。為了提升學習體驗,作者參與了任課教師主導的「計概小幫手1.0」Telegram 聊天機器人的開發,該工具旨在提供更豐富且個性化的學習支援。這個機器人已具備查詢成績、提交程式碼、查看課程投影片和教學影片等功能。 基於學生的反饋,本研究開發了「計概小幫手2.0」,主要是對「計概小幫手1.0」做進一步優化,提升其操作簡便性與直觀性,並增強互動性及 AI 相關的功能。本研究融合生成式 AI,允許學生在聊天框中直接輸入問題,機器人便能回應相關的課程內容、程式碼範例和示意圖等各項資訊。此外,本研究運用了 LangChain 的 RAG 技術,將教學影片、課程投影片及課程內容整合,提升機器人在回覆查詢時的處理能力,從而為學生提供更深入的學習支援。 為全面評估「計概小幫手2.0」的效果,研究引入了科技接受模型(TAM),設計了涵蓋感知有用性、感知易用性、使用態度和使用意願等構面的調查問卷,並通過開放性問題收集學生的使用感受和改進建議。這些數據將為未來的進一步優化提供依據,以創造更高效且有趣的學習環境。 關鍵字: AI聊天機器人、LangChain、生成式AI、科技接受模型、程式課程
In the introductory "Computer Science" course for freshmen, students often face various challenges when learning the C programming language. To enhance their learning experience, the author participated in the development of the Computer Science Bot (CSBot) 1.0, a Telegram chatbot led by the course instructor. This tool aims to provide richer and more personalized learning support, offering features such as grade and code submission inquiries, and access to teaching slides and videos. Based on student feedback, this study led to the development of CSBot 2.0, which further optimized CSBot 1.0 by improving its ease of use and intuitive design, as well as enhancing interactivity and AI-related features. The research incorporated generative AI, allowing students to ask questions directly in the chatbox, where the bot responds with relevant course content, code examples, and diagrams. Additionally, the study utilized LangChain's RAG technology to integrate teaching videos, slides, and course content, improving the bot's ability to handle complex queries and providing deeper learning support. To comprehensively evaluate the effectiveness of CSBot 2.0, the study adopted the Technology Acceptance Model (TAM), designing a survey that covers key areas such as perceived usefulness, ease of use, user attitudes, and willingness to use. Open-ended questions were also included to gather student feedback and suggestions for improvement. This data will guide further refinements to create a more efficient and engaging learning environment. Keywords: AI chatbot, LangChain, Generative AI, TAM, programming course