生質能源在淨零排放中扮演著關鍵的角色,植物將大氣中的二氧化碳以光合作用合成為碳氫化合物以達到碳匯之效果,以生質物作為燃料以熱解、氣化或是燃燒產生能源,接著將排放之二氧化碳捕捉並封存達到對環境之負碳效果,台灣作為海島國家具有豐富的海洋資源,本研究以大型藻類作為生物質來源,並且對廢棄免洗筷作為另一種生物質來源,由於電漿可以用較少的電力產生具有高能量密度之電漿弧,具有快速反應、低選擇性之優點,本研究係以大型藻類之石蓴、冬青葉馬尾藻、鋸齒麒麟菜、台灣與那國藻以及廢棄一次性免洗筷作為樣本進行測試,以常壓微波電漿技術熱解生物質以產製氫氣及甲烷,並評估微波功率、載流氣體流量及生物質質量對於產製甲烷及氫氣之效果,在參數測試中,以微波功率影響效果最為明顯,由800Watt提升至1400Watt可將大型藻類之石蓴產製之甲烷及氫氣由50.6vol% 提升至73.6 vol%,微波功率是影響生物質熱解產製甲烷及氫氣的關鍵參數,大型藻類在1400Watt之微波功率下可產製之氫氣及甲烷在61-73.6vol%之間,不同種類的大型藻類氣化效果相異較大,而石蓴之表現最佳,另一方面,5公克之一次性免洗筷在1200Watt之微波功率下便可達到71.8 vol % 之氫氣及甲烷產製,其氣體能量轉換效率達54.6%,而大型藻類的石蓴氣體能量轉換效率則為41.3%,而氣體能量轉換效率最差為台灣與那國藻之19.6%,將生物質以微波電漿技術進行熱解以產製氣體燃料,亦或是其他氫氣能源之利用是達到淨零排放目標中具有展望的技術,同時具有低碳排放之優點,若再經過碳捕捉後將有機會達到碳中和之目的。
Biomass energy plays a crucial role in achieving net-zero emissions, as plants utilize photosynthesis to convert atmospheric carbon dioxide into hydrocarbons, acting as a carbon sink. Transforming biomass as a fuel source through various methods such as pyrolysis, gasification, or combustion, followed by capturing and storing the emitted carbon dioxide to achieve the negative carbon on the environment. Taiwan, being an island nation, boasts abundant marine resources. This study focuses on macroalgae as a biomass source and waste gas from disposable chopsticks as transformation to biomassfuel. Plasma technology is applied, leveraging its advantages of rapid response and low selectivity. Due to its ability to produce a high-energy-density plasma arc with minimal electricity, This research choose macroalgae species such as Ulva lactuca, Yonagunia formosana , Eucheuma serra, Sargassum ilicifolium as well as waste disposable chopsticks as sample. The biomass is subjected to microwave plasma technology under atmospheric pressure to thermally decompose and produce hydrogen and methane. The study evaluates the effects of microwave power, carrier gas flow rate, and sample quantity on methane and hydrogen production. In the parameter tests, experiment show that plasma power is the most influental parameter during pyrolysis process. Increasing the microwave power from 800 Watts to 1400 Watts enhances methane and hydrogen production for Ulva lactuca sample, reaching 73.6 vol%. Microwave power is a key parameter affecting the thermal decomposition of biomass for methane and hydrogen production. Under 1400 Watts microwave power, macroalgae can produce hydrogen and methane in the range of 61-73.6 vol%. Different types of macroalgae exhibit significant variations in gasification efficiency, with Ulva lactuca demonstrating optimal performance. On the other hand, 5 grams of waste chopsticks achieve a production of 72.9 vol% of hydrogen and methane at 1200 Watts of microwave power, with an gas energy conversion efficiency of 54.6%. The gas energy conversion efficiency of macroalgae, particularly Ulva lactuca, can reach 41.3%, while the lowest efficiency is observed in Ulva lactuca at 19.6%. The utilization of microwave plasma technology for biomass pyrolysis to produce syngas presents a promising technique echo net-zero emissions. Moreover, targets will achieve negative carbon if combined with cabon capture.