透過您的圖書館登入
IP:3.15.220.106
  • 學位論文

合成P型有機場效電晶體材料-雙吡咯並2,3酮[4,5-f:4',5'-r]紅花烯衍生物

Synthesis of Bispyrrolo-2,3-dione[4,5-f:4',5'-r]rubicene Derivatives for P-type Organic Field Effect Transistors

指導教授 : 郭明裕

摘要


有機場效電晶體已經發展了不短的時間,為了延長元件效能及使用時間,目前的發展趨勢是將P型和N型電晶體合併成為互補式的有機場效電晶體,然而N型半導體材料因為容易被空氣中水氧影響,導致N型材料的開發遠遠不及已經發展成熟的P型材料,本研究為設計並合成出可於空氣中穩定操作的N型有機半導體材料。   我們以紅花烯作為主結構,於兩側接上吡咯並接上氰基,以期降低產物的LUMO能階、縮小Energy gap,使其成為空氣穩定的N型有機半導體材料。   我們成功合成出BPR,然而過程中始終無法獲得BDPR,更換了數種路徑仍未成功,因此分析了為何失敗的可能性,也提出了可能的解決方法。   為了解BPR,我們也研究了電化學性質、光學性質及熱穩定性。藉由循環伏安法及紫外-可見光譜得知了BPR的LUMO、HOMO能階及能階差,分別為-3.00、-5.00和2 eV。   而TGA顯示BPR具有良好熱穩定性,熱裂解溫度為177 ˚C,不僅可用於真空蒸鍍,即使材料本身結構剛硬,其溶解度卻也適用於液相製程,其長π共軛系統、良好平面性的特性對於分子整齊排列是一大優勢,我們也期望BPR能成為優秀的P型半導體材料。

並列摘要


Organic field-effect transistors have been developed for long time. However, the development of N-type materials is far less than P-type materials. In this study we design and synthesis air-stabled N-type organic semiconductor materials.   We use rubicene as the main structure, with pyrrole and cyano group on both sides, in order to reduce the LUMO energy level and the Energy gap.   We have successfully synthesized a novel Bispyrrolo[2,3-f: 2’, 3’-r]rubicene (BPR) by C-H arylation as a P-type OFET material, but we couldn’t get BDPR during the process. After changing several paths, it was still unsuccessful. We investigated BPR’s electrochemical, photophysical,and themal properties from CV, UV, and TGA. The HOMO and LUMO levels were calculated using the relation [ELUMO = -4.8 - (Ered+Eox)/2 + Efc] eV. The HOMO and LUMO levels of BPR are -5.00 eV and -3.00 eV respectively. Optical energy gap estimated from the onsets of the solution absorption, is 2.00 eV for BPR. The TGA shows that BPR has good thermal stability, and the decomposition temperature is 177 ˚C. We expect BPR to be an excellent P-type semiconductor material.

參考文獻


[1] M. Pope, H. Kallmann, and P. Magnante, The Journal of Chemical Physics, 1963, 38. 2042-2043.
[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Journal of the Chemical Society, Chemical Communications, 1977. 578-580.
[3] A. Tsumura, H. Koezuka, and T. Ando, Applied Physics Letters, 1986, 49. 1210-1212.
[4] O. D. Jurchescu, M. Popinciuc, B. J. Van Wees, and T. T. Palstra, Advanced Materials, 2007, 19. 688-692.
[5] O. Y. Kweon et al., Journal of Materials Chemistry C, 2019, 7. 1525-1531.

延伸閱讀