透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

非凸限制區域上的向量值擬變分不等式

Generalized Vector Quasi-Variational Inequalities On Nonconvex Constraint Regions

指導教授 : 朱亮儒
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


這論文的要旨有兩層: (1)我們利用一般化的KKM mapping 概念,首先得到廣義的 G´orniewicz固定點定理; (2)藉著應用我們的固定點定理,建立幾個廣義的向量值擬變分不等式(GVQVI)的存在性定理.我們在既不是凸的亦不是緊緻的,而僅僅只是在 nearly convex 的區域上推論出幾個結果.

並列摘要


We introduce a new class of nonconvex sets, which are named nearly convex set, and then extend several existence results on nonconvex optimization problems. In fact, the purpose of this paper is two fold: (1) we first obtain a rather general version of the G´orniewicz fixed point theorem by using the concept of generalized KKM mappings; (2) we establish some existence theorems for generalized vector quasi-variational inequality problems by applying our fixed point theorem. We derive several results here neither convex nor compact on constraint

參考文獻


{1} Q. H. Ansari & J. C. Yao (2000). On nondifferentiable and nonconvex vector optimization problems, J. Optim. Theory Appl. 106, 487-500.
{3} E. G. Begle (1942). Locally connected spaces and generalized manifolds, Amer. Math. J. 64, 553-574.
(4) E. G. Begle (1950). The Vietoris mapping theorem for bicompact space, Ann. Math. 51, 534-543
(5) F. E. Browder (1984). Coincidence theorems, minimax theorems and variational inequalities, Comtemporary Math. 26, 67-80.
(6) S. S. Chang, H. B. Thompson & G. H. Z. Yuan (1999). The existence theorems of

延伸閱讀