透過您的圖書館登入
IP:216.73.216.59
  • 學位論文

基於低功耗藍芽實現強健型室內定位

BLE-Based Implementation for Robust Indoor Localization

指導教授 : 許陳鑑 王偉彥

摘要


本論文主要針對低功耗藍芽(Bluetooth Low Energy, BLE)室內定位演算法做改良,以降低誤差對室內定位結果的影響及增加準確率。本論文首先以BLE裝置佈置一無線網路環境,透過訊號強度的採集,進行演算法的計算,進而求出待測物的定位點。為改善不穩定的訊號強度對計算定位點造成的擾動,本論文採用模糊邏輯的概念,降低不穩定訊號對定位演算法的影響,並藉由近鄰傳播聚類演算法進行資料分群,計算出在模糊系統中的模糊集合,最後透過路徑圖表法由前一時刻的定位點來輔助演算法的計算,以增加定位的準確率。演算法主要分為離線與在線兩階段,離線階段係透過收集大量的資料,經過分群演算法後得到不同的群集,進而用來建置模糊規則庫;在線階段為接收即時的資料,透過模糊推論以及路徑圖表法估測出定位點。最後,本論文將對所提出的演算法進行不同情境下的實驗,並對這些實驗結果做分析。

並列摘要


This thesis mainly focuses on improving the Bluetooth Low Energy (BLE) based indoor localization algorithm to reduce the error of localization and increase the ac-curacy. BLE devices are used to deploy a wireless network environment. By collect-ing a set of the received signal strength, the algorithm is used to obtain the localiza-tion of the object. In order to avoid the fluctuations caused by unstable received sig-nal strength, fuzzy system is used in the proposed algorithm consist-ing of two phases: the offline phase and the online phase. In the offline phase, through collecting a large amount of data, different clusters are obtained based on a clustering algorithm. Next, the clusters are used to establish a fuzzy rule base. In the online phase, according to real-time data, fuzzy system and path graph method are used to obtain the localiza-tion result. Finally, extensive experiments are con-ducted to validate the performance of the proposed algorithm in various situations.

參考文獻


[1] R. Pugaliya, J. Chabhadiya, N. Mistry, and A. Prajapati, “Smart Shoppe Using Bea-con,” in Proc. IEEE Int’l. Conf. Smart Technol. Manag. Comput. Commun. Controls Energy Materials (ICSTM), Chennai, India, Aug. 2017, pp. 32-35.
[2] 吳宗遠,“Beacon微定位應用功能研究-以室內停車場管理系統為例”,樹德科技大學資訊工程系碩士論文,2016年08月。
[3] X.-Y. Lin, T.-W. Ho, C.-C. Fang, Z.-S. Yen, B.-J. Yang, and F. Lai, “A Mobile Indoor Positioning System Based on ibeacon Technology,” in Proc. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, Aug. 2015, pp. 4970-4973.
[4] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor Positioning Technique and System,” IEEE Trans. Fuzzy Syst. Man Cybern., vol. 37, no. 6, pp. 1067-1080, Nov. 2007.
[5] S.-H. Fang, T.-N. Lin, and K.-C. Lee, “A Novel Algorithm for Multipath Fingerprint-ing in Indoor WLAN Environment,” IEEE Trans. Wireless Com., vol. 7, no. 9, pp. 3579-3588, Sep. 2008.

延伸閱讀