透過您的圖書館登入
IP:216.73.216.122
  • 學位論文

非監督式深度學習系統應用於AOI檢測之研究

Unsupervised Deep Learning System for AOI Detection

指導教授 : 黃文吉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文提出並開發基於非監督式深度學習的表面瑕疵檢測系統,論文所提 出之研究內容,以檢測高階圖形處理器PCI Express金手指表面作為主要應用範例。 在開發平台上,本實驗以Python為主要系統建構語言;在深度學習實作 上,Python提供完整以及快速的開發工具,也提供相當充足的傳統影像處理演算法函式,讓實驗進行更為方便。 本實驗應用了Autoencoder模型的特性,即訓練實驗模型對目標影像的還原能力,檢測時經由比較輸入與輸出之間的差異來找出表面瑕疵。由於影像內容包含鍍金條、底板和部分PCB零件焊貼表面,在目標不僅侷限於鍍金條的表面部分的條件下,本實驗的最終重點在於如何使整體系統對不同表面內容擁有優良的檢測適性。

並列摘要


none

並列關鍵字

none

參考文獻


[1] Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3465-3471.
[2] Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., & De Schutter, B. (2016, July). Deep convolutional neural networks for detection of rail surface defects. In 2016 International joint conference on neural networks (IJCNN) (pp. 2584-2589).
[3] Racki, D., Tomazevic, D., & Skocaj, D. (2018, March). A compact convolutional neural network for textured surface anomaly detection. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1331-1339).
[4] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[5] Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 31(3), 759-776.

延伸閱讀