透過您的圖書館登入
IP:18.222.97.243
  • 學位論文

迷航於OTT平台?介面陷阱與選擇幻覺

Lost in the OTT Platform? Interface Traps and Illusions of Choice

指導教授 : 蔡如音

摘要


臺灣的影視產業環境,逐漸從傳統媒體走向OTT平台,OTT平台已然成為當代閱聽人觀看實踐中的重要媒介。 本研究以符擔性的觀點切入,關注影視產業與閱聽人觀看模式都在過度的此時,OTT平台的介面與演算法在閱聽人觀看過程中的位置。首先以「公視+、MyVideo、KKTV、LINE TV」為研究對像,探討OTT平台的介面如何成為內容流通的場域,平台的符擔性引導閱聽人觀看特定內容的同時,提供其行動的可能。以及,採用深度訪談和焦點團體法,藉由與閱聽人的對話並觀察受訪者的行為,認識閱聽人觀看實踐的轉變,勾勒其與OTT平台的互動關係。 研究發現,本土OTT平台藉由符擔性的交互作用,讓平台實現一個介面化的空間。介面中的符擔性掌握影視內容的流通,企圖突出平台投資或原創的內容,而閱聽人依循對平台符擔性的理解,展開與影視內容相遇並觀看的行動。然而,本土OTT平台無法為閱聽人帶來更豐富多樣的內容選擇,同時,本土平台利用演算法形成的推播策略,也無法實現閱聽人心目中「個人化服務」的介面。當閱聽人期待的演算法與平台業者的策略形成矛盾時,閱聽人描繪出對OTT平台中演算法運用的理想樣態,期待本土OTT平台不只是數位宣傳的管道,而是構建一個與閱聽人積極互動的場域。

並列摘要


As Taiwan’s film and television industry gradually shifted from a traditional media industry to a technology-driven and platform-based industry, the OTT (over-the-top) streaming service has become a pivotal medium for local audiences. Amidst this transition, this study examines how local audiences engage with the interface design and algorithmic principle of the local subscription-based VOD services. My research focuses on the following four domestic SVOD services: PTS-Plus, MyVideo, KKTV, and LINE TV. This study adopts affordance theory to investigate how the screen interface designs of each of the four SVOD services guide the viewers toward discovering specific content. In order to explore the changes in audience viewing practices and their interactions with OTT platforms, the researcher conducted in-depth interviews and focus groups with audiences with the intention to understand the subscriber’s SVOD choices and their interactions with the OTT platforms. The findings reveal that local OTT platforms control the discoverability of audiovisual content through affordance interactions within the interfaces, attempting to highlight invested or original content with the platform. However, the local audience seems dissatisfied with the content offered by the domestic OTT platforms, which pale in quantity and diversity compared to the dominant transnational SVOD, Netflix. Additionally, the algorithm-driven recommendation strategies fail to deliver the “personalized services” anticipated by the audience. In situations where the audience expectations and platform strategies diverge, viewers envision an ideal scenario where algorithms on OTT platforms foster active engagement rather than merely serving as channels for digital promotion.

參考文獻


DeepTech深科技(2019年6月15日)。好萊塢正在用AI揣摩人心 幫助預測電影票房。鏡週刊。https://www.mirrormedia.mg/story/20190605mit006/
Huang(2021年11月22日)。《華燈初上》眾星雲集,精湛呈現台北獨具一格的次文化。Netflix。https://about.netflix.com/zh_tw/news/in-star-studded-light-the-night-a-unique-taipei-subculture-comes-alive
INSIDE(2020年11月20日)。台劇發展由「大數據」助攻,文策院集結數據分析專家看台流吹起。關鍵評論網。 https://www.inside.com.tw/article/21633-2020-tccf-data-driven
Jensen, K. B.(2005)媒介與傳播研究法指南:質性與量化方法論(陳玉箴譯)。韋伯文化國際。(原著出版於2002)
Norman, D. A.(2014)。設計的心理學:人性化的產品設計如何改變世界(3版)(陳宜秀譯)。遠流。(原著出版於2013)

延伸閱讀