透過您的圖書館登入
IP:216.73.216.250
  • 學位論文

用於光學相干斷層掃描之基於深度學習和聯邦學習框架之視網膜層分割技術

Retinal layer segmentation technology based on deep learning and federated learning framework for optical coherence tomography

指導教授 : 呂成凱
本文將於2029/08/13開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


在本研究中,我們提出了一種輕量級模型FPENet(α),以FPENet為基底,用於處理專為邊緣設備設計的 OCT 影像中視網膜層分割。視網膜層分割是眼科診斷的重要工具,但其在資源有限的邊緣設備上應用時存在計算成本和精度之間的瓶頸。FedLion(α)在使用 HCMS資料集、NR206資料集及OCT5K資料集進行訓練和測試時,實現了高精度和高效率。該模型經過最佳化,實現了精度和計算成本之間的平衡。FPENet(α)可以有效地捕捉不同尺度的特徵,同時大幅降低計算成本,非常適合部署在如Raspberry Pi等資源有限的邊緣設備上,其輕量化設計使其在計算資源和內存容量方面具有顯著優勢。聯邦學習的部分我們以FedLion為基礎添加了L2正則化與學習率遞減,提出FedLion(α),有效處理數據非獨立同分布的問題。數據顯示使用FPENet(α)與FedLion(α)進行聯邦學習,相較於原先只使用FPENet(α),在HCMS資料集平均DICE係數提升了0.7%,在NR206資料集提升了3.75%,在OCT5K資料集提升了9.1%。

並列摘要


In this study, we propose a lightweight model, FPENet(α), based on FPENet, designed for retinal layer segmentation in OCT images specifically for edge devices. Retinal layer segmentation is a crucial tool for ophthalmic diagnosis, but it faces the challenge of balancing computational cost and accuracy when applied to resource-constrained edge devices. FedLion(α) achieves high accuracy and efficiency when trained and tested on the HCMS dataset, NR206 dataset, and OCT5K dataset. This model has been optimized to balance precision and computational cost.FPENet(α) can effectively capture multi-scale features while significantly reducing computational cost, making it highly suitable for deployment on resource-limited edge devices such as the Raspberry Pi. Its lightweight design provides significant advantages in terms of computational resources and memory capacity. In the federated learning part, we enhanced FedLion by incorporating L2 regularization and learning rate decay, creating FedLion(α), which effectively addresses the issue of non-IID data.Data shows that using FPENet(α) and FedLion(α) for federated learning, compared to using FPENet(α) alone, increases the average DICE coefficient by 0.7% on the HCMS dataset, by 3.75% on the NR206 dataset, and by 9.1% on the OCT5K dataset.

參考文獻


[1] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He, “Federated learning on non-iid data silos: An experimental study,” 2022 IEEE 38th International Conference on Data Engineering (ICDE), IEEE, pp. 965-978, 2022.
[2] Jakub Konečný, H. Brendan McMahan, Daniel Ramage and Peter Richtárik, “Federated Optimization: Distributed Machine Learning for On-Device Intelligence,” 2016.
[3] 王清泓,“光學同調斷層掃描(OCT)在青光眼診斷治療上的應用”,台灣健康刊物,2024。
[4] A. K. Schuster, C. Erb, E. M. Hoffmann, T. Dietlein, and N. Pfeiffer, “The diagnosis and treatment of glaucoma,” Deutsches Ärzteblatt International, vol. 117, no. 13, p. 225, 2020.
[5] Health management: OCT Portable Device, Health Management, 2024. https://healthmanagement.org/products/view/all/oct-ophthalmoscope-ophthalmic-examination-pachymeter-oct-pachymetry-portable-istand-optovue

延伸閱讀