透過您的圖書館登入
IP:216.73.216.156
  • 學位論文

偶著色問題之探討

A study on the even coloring of a graph

指導教授 : 王弘倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


給定一個無向圖G,如果著色φ對所有頂點v皆存在一顏色c使得N(v)內顏色為c的個數為正偶數,則著色φ為偶著色。對於任意正整數k,k-偶著色問題為是否存在一k-著色為偶著色。關於2-偶著色問題,我們提出此問題在二分圖上是NP完備問題。在conflict-free著色問題上,Bhyravarapu等人在Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs中提出使用團寬與顏色數作為參數的固定參數可解演算法。延伸他們的想法,我們提出了在2-偶著色問題上使用秩寬作為參數的固定參數可解演算法。對於conflict-free 著色問題,我們給出了在有支配點對的二分圖上conflict-free著色問題色數的上界。

並列摘要


Given an undirected graph G, a coloring φ of G is said to be even if for each vertex v ∈ V (G) there exists a color c such that φ−1(c)∩N(v) is positive even-size. For an integer k, the even k-coloring problem asks whether an input graph admits an even k-coloring. We show that for any bipartite graph, the even 2-coloring problem is NP-complete. In [Bhyravarapu et al., Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs, in IWOCA, 2021], they gave a fixedparameter tractable algorithm parameterized by clique-width and number of colors as the parameter to decide whether the coloring is conflict-free. Extending their idea, we give an FPT algorithm with rank-width as the parameter to decide whether there exist an even 2-coloring. For conflict-free coloring, we give an upper bound on the conflict-free chromatic number of weak dominating pair bipartite graphs.

參考文獻


G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput., vol. 33, no. 1, pp. 94-136, Feb 2003.
S. Bhyravarapu, S. Kalyanasundaram, and R. Mathew, A short note on conflict‐free coloring on closed neighborhoods of bounded degree graphs, J. Graph Theory., vol. 97, no. 4, pp. 553-556, Jul 2021.
Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich, and C. Scheffer, Conflict-Free Coloring of Graphs, SIAM J. DISCRETE MATH., vol. 32, no. 4, pp. 2675-2702, 2018.
S. Bhyravarapu, T. A. Hartmann, S. Kalyanasundaram, and I. V. Reddy, Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs, in IWOCA, Ottawa, ON, Canada, 2021, pp. 92-106.
Y. Caro, M. Petruševski, and R. Škrekovski, Remarks on odd colorings of graphs, Discrete Appl. Math., vol. 321, pp. 392-401, Nov 2022.

延伸閱讀