透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

尼龍6/微米奈米複合材料製備和性質

Preparation and properties of nylon 6/micron nanocomposites

指導教授 : 黃世欣

摘要


本研究主要探討尼龍6(Polyamide 6 ; PA6)分別添加不同含量(1、3、5 wt%)之亞麻(Flax)與不同含量(0.5、1、3 wt%)之石墨烯(Graphene),使用傳統射出成型與微細發泡射出成型兩種不同製程,探討不同添加物含量與不同製程對複合材料之奈米特性、機械、熱、發泡性質的影響。研究結果顯示,奈米特性部份,從TEM圖可看到石墨烯添加量為0.5 wt%時,石墨烯的分散良好,但添加量為3 wt%時,石墨烯發生了團聚現象,從XRD圖可看到石墨烯的峰值有出現在複合材料中,代表石墨烯有混合至PA6基材中;機械性質部份,添加亞麻後雖會使拉伸強度與伸長率下降,但衝擊強度與彈性係數會有所提升,特別是在微細發泡射出成型製程下有最明顯的效果,而添加石墨烯後在添加量為0.5 wt%時有最好的拉伸強度,衝擊強度隨著添加量提升有逐漸下降的趨勢,彈性係數隨添加量提升有逐漸上升的趨勢;動態機械性部份,5 wt%的亞麻與3 wt%的石墨烯添加量有最高的儲存模數;熱性質部份,添加亞麻後裂解溫度與玻璃轉移溫度皆有所提升,在添加量為1wt%時有最高的裂解溫度與玻璃轉移溫度,而添加石墨烯後裂解溫度與玻璃轉移溫度也皆會提升,在添加量為3 wt%時有最高的裂解溫度,而添加量為0.5 wt%時有最高的玻璃轉移溫度;流變性質部份,添加亞麻與石墨烯皆會使黏度下降,兩者皆起到潤滑劑的功用;發泡型態部份,隨著亞麻添加量的增加,氣泡大小會隨之變小,而氣泡密度也會隨之變大,還能使氣泡大小較為均勻,但從SEM圖中,可以明顯看到基材上會出現2-3 μm的微小顆粒,這些微小顆粒間接影響了複合材料的拉伸強度,而隨著石墨烯的添加量增加,氣泡大小有變大的趨勢,而氣泡密度也隨之變小,這是因為石墨烯產生了團聚現象所導致。

並列摘要


Polymer composites combine two materials together to have the property which a single material does not have. The most important reason to use composites is the mechanical properties enhancement. However, they are several applications can be used by composites, like heavy metal absorption of waste water by flax. This study investigated the effects of flax (1, 3, 5 wt%) and graphene loading (0.5, 1, 3 wt%) on the tensile strength/thermal properties of microcellular injection molded PA6/flax composites. The fillers used, flax and graphene, are micro and nano materials in size respectively. The injection molding process was done by non-foam and microcellular molding. Results showed that the dispersion from TEM pictures, 0.5 wt% of graphene loading had the best dispersion for PA6/graphene nanocomposites. This loading of graphene also had the best tensile strength in three different loading (0.5, 1.0, 3.0 wt%). Tensile strength is related to the filler dispersion in the matrix. Good dispersion resulted in good tensile strength. Tensile strength decreased with addition of flax but impact strength and Young’s modulus increased with increasing flax loading. The enhancement was significantly for microcellular molding. The 5 wt% flax loading of the composites had the largest storage modulus for PA6/flax microcomposites and 0.5 wt% graphene loading had the largest tensile strength for graphene nanocomposites. The 1 wt% of flax loading had the highest degradation temperature for PA6/flax microcomposites and 3 wt% had the highest degradation temperature for PA6/graphene nanocomposites. Cell size decreased and cell density increased with addition of flax and graphene of the PA6 composites.

並列關鍵字

composites nanocomposites flax graphene polyamide microcellular PA6

參考文獻


[1]劉士榮編著,高分子流變學-塑膠加工之特性,滄海書局,台中,民國八十四年。
[2]馬振基編著,高分子複合材料(上冊),國立編譯館,台北,民國八十九年九月。
[3]桂一支,高分子用有機助劑,北京,人民教育出版社,西元1983年。
[4]科盛科技股份有限公司,Moldex3D模流分析技術與應用,台北,全華圖書股份有限公司,民國九十六年。
[5]William D.Callister, Jr & David G. Rethwisch 著,陳恒清、楊子毅、張柳春譯,材料科學與工程,歐亞書局有限公司,台北,民國一百零二年。

延伸閱讀