透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

在馬達的電流波形上使用Fisher’s線性鑑別分析法-辨識馬達的品質類別

Fisher’s Linear Discriminant Analysis Method for Motor Quality Types on Current Waveforms

指導教授 : 葉雲奇 林高洲

摘要


本論文提出一個分析馬達電流波形並有效辨識馬達品質類別的方法,稱之為Fisher’s Linear Discriminant Analysis (Fisher’s LDA)法。本論文之Fisher’s LDA法是由下列三大單元所組成,分別為:(1)馬達信號的前置處理:包含馬達電流波形信號的擷取、雜訊的去除、信號的放大、類比/數位信號的轉換、電腦介面電路的設計等;(2)主要特徵點的選取與主要特徵值的統計:本論文以區間交集法(Range-Overlap Method,ROM)在眾多的原始特徵點中選取主要特徵點,並使用統計的方式計算主要特徵點之特徵值範圍,包含特徵值的最小值、最大值、算數平均值等;(3)辨識馬達品質的類別:本論文以Fisher’s LDA演算法辨識馬達品質的類別。依據實際的測試結果,本論文提出之Fisher’s LDA法性能如下:將「好的馬達」辨識成是「好的馬達」之平均正確率是99.92%,將「壞的馬達」正確辨識成是「壞的馬達」的正確率是92.43%,將「壞的馬達」辨識成是「好的馬達」的錯誤率是7.57%,將「好的馬達」辨識成是「壞的馬達」之錯誤率是0.08%。總平均正確辨識率為99.72%。

並列摘要


This study proposes a Fisher’s Linear Discriminant Analysis (Fisher’s LDA) approach to analyze current waveform for determining the motor’s quality types. Fisher’s LDA comprises three main stages: (i) the preprocessing stage for enlarging motor’s current waveforms’ amplitude and eliminating noises; (ii) the qualitative features stage for qualitative feature selection of a motor’s current waveform; (iii) the classification stage for determining motor’s quality types using the Fisher’s LDA. In the experiment, the right rate is 99.92% (92.43%) for right judgment on good (defect) motor to be determined as good (defect), the error rate is 7.57%% (0.08%) for wrong judgment on defect (good) motor to be determined as good (defect). The average right rate is 99.72%.

並列關鍵字

Fisher’s LDA feature selection DC motor

參考文獻


[1] H.X. Chen, P.S.K. Chua, G.H. Lim, “Adaptive wavelet transform for vibration signal modeling and application in fault diagnosis of water hydraulic motor,” Mech. Syst. And Signal Process., vol. 20, 2006, pp. 2022-2045.
[2] S.M. Rasheed, D.W. Stashuk, M. Kamel, “An interactive environment for motor unit potential classification using certainty-based classifiers,” Simul. Model. Pract. and Theory, vol. 16, 2008, pp. 1293-1311.
[3] H. Higuchi, S.A. Endow, “Directionality and processivity of molecular motors,” Curr. Opin. in Cell Biol., vol. 14, 2002, pp. 50-57.
[4] A. Kapun, M. Curkovic, A. Hace, K. Jezernik, “Identifying dynamic model parameters of a BLDC motor,” Simul. Model. Pract. and Theory, vol. 16, 2008, pp. 1254-1265.
[5] M. Ahdesmäki, K. Strimmer, “Feature selection in omics prediction problems using cat scores and false nondiscovery rate control,” Ann. of Appl. Statistics, vol. 4, 2010, pp. 503–519

延伸閱讀