本論文提出一個分析馬達電流波形並有效辨識馬達品質類別的方法,稱之為Fisher’s Linear Discriminant Analysis (Fisher’s LDA)法。本論文之Fisher’s LDA法是由下列三大單元所組成,分別為:(1)馬達信號的前置處理:包含馬達電流波形信號的擷取、雜訊的去除、信號的放大、類比/數位信號的轉換、電腦介面電路的設計等;(2)主要特徵點的選取與主要特徵值的統計:本論文以區間交集法(Range-Overlap Method,ROM)在眾多的原始特徵點中選取主要特徵點,並使用統計的方式計算主要特徵點之特徵值範圍,包含特徵值的最小值、最大值、算數平均值等;(3)辨識馬達品質的類別:本論文以Fisher’s LDA演算法辨識馬達品質的類別。依據實際的測試結果,本論文提出之Fisher’s LDA法性能如下:將「好的馬達」辨識成是「好的馬達」之平均正確率是99.92%,將「壞的馬達」正確辨識成是「壞的馬達」的正確率是92.43%,將「壞的馬達」辨識成是「好的馬達」的錯誤率是7.57%,將「好的馬達」辨識成是「壞的馬達」之錯誤率是0.08%。總平均正確辨識率為99.72%。
This study proposes a Fisher’s Linear Discriminant Analysis (Fisher’s LDA) approach to analyze current waveform for determining the motor’s quality types. Fisher’s LDA comprises three main stages: (i) the preprocessing stage for enlarging motor’s current waveforms’ amplitude and eliminating noises; (ii) the qualitative features stage for qualitative feature selection of a motor’s current waveform; (iii) the classification stage for determining motor’s quality types using the Fisher’s LDA. In the experiment, the right rate is 99.92% (92.43%) for right judgment on good (defect) motor to be determined as good (defect), the error rate is 7.57%% (0.08%) for wrong judgment on defect (good) motor to be determined as good (defect). The average right rate is 99.72%.