發電效率與二氧化碳的環保問題近來受到世界各國的關注,過去的論文很少比較兩國以上的發電效率,由於各國的經濟與發展建設都與能源有很大的關係,因此本論文將探討世界80個國家的發電效率。本研究使用資料包絡分析法(DEA)研究世界80個國家的發電效率,使用勞力、裝置容量與煤消耗量作為投入,使用工業用電量、民生用電量與二氧化碳排放量作為產出。 在第四章中一開始先比較各投入產出與各洲的敘述性統計,再比較各個模型中的效率,接著將80個國家分為不同的分類後比較效率,接著使用Tobit迴歸分析分析四個可能影響效率的假設,分別是國民生產總值(GNP)、洲別、都市化程度與電力進口量,結果顯示國民生產總值(GNP)、洲別與都市化程度和發電效率間有顯著關係且都為正數,但電力進口量並無顯著差異。 在傳統文獻中,只有少數的論文將BCG矩陣與發電效率結合,因此在本篇論文中,本文中我們使用BCG矩陣分析在有無考慮二氧化碳排放之下兩個模式之間的效率是否有顯著差異,結果顯示在考慮二氧化碳作為產出與不考慮二氧化碳作為產出的兩個模型中有顯著差異;更從BCG矩陣中挑選金牛與問題兒童這兩個分類中的幾個國家,查詢他們的政策是否對於效率產生影響。
Electricity efficiency and environment problems such as CO2 emissions are important issue in the international. Because of electricity efficiency is related to economy, development and constructions are related of every country, in this study, we analyze electricity efficiency of 80 countries. In this study, we analyze electricity efficiency of 80 countries with Data Envelopment Analysis (DEA). We select labor, installed capacity and coal consumption as inputs and industrial electricity, residential electricity and CO2 emissions as outputs. In the beginning of chapter 4, we compare basic statistic of every input and output, and compare those inputs and outputs in different continent. We also compare efficiency in each model; divide 80 countries into 3 categories and compare their efficiencies. Then, we utilize Tobit Regression Analyze to test four hypotheses which probably influent efficiency; GNP, continent, urbanization and electricity import level. Results show that there is significant correlation in each hypothesis except electricity import level. In traditional literature, few literatures combine BCG Matrix with energy or electricity efficiency, in this paper, we use BCG Matrix to analyze two models (considering CO2 emissions and not considering CO2 emissions), and result shows that there is significant difference between those two models. Moreover, we select some countries from Cash Cows and Problem Children to figure out the reason why they have low efficiency.