透過您的圖書館登入
IP:18.191.165.88
  • 學位論文

LDPC碼解碼中最小和演算法及其變形之研究

On Min-Sum Algorithm and Its Variants for Decoding of LDPC Codes

指導教授 : 白宏達
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本篇論文中,我們提出一個用在低密度奇偶校驗 (low-density parity-check) 碼的解碼方法。一般常見的演算法為和積演算法(sum-product algorithm),但其複雜度高。而最小和(min-sum)演算法是一種最常用來簡化和積演算法的複雜度,但是效能比和積演算法低。正規化最小和( normalized min-sum)演算法中,乘上正規化參數,增加一點點複雜度,就能改善最小和演算法的效能。去年被人提出的自更正最小和(self-corrected min-sum)演算法,比較兩次遞迴當中,更新值的正負號,相異者將其設為零,相同者則更新。我們發現這兩種演算法並不牴觸,所以合併兩種演算法,以改進最小和演算法的效能。

並列摘要


無資料

參考文獻


[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
[4] D. Oh and K. K. Parhi, “Min-sum decoder architectures with reduced word-length for LDPC codes,” accepted for publication in IEEE Trans. on Circuits and Systems I, 2009.
[6] J. Chen, R. M. Tanner, C. Jones, and Y. Li, “Improved min-sum decoding algorithms for irregular LDPC codes,” Proc. IEEE ISIT 2005, pp. 449-453, Sep. 2005.
[7] J. Chen and M. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Trans. Commun ., vol. 50, no. 3, pp. 406-414, Mar. 2002.
[9] M. Miladinovic, M. P. C. Fossorier and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673-680, May 1999.

延伸閱讀