透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

定熱通量加熱下完全展開層流管流之熵產生分析

Entropy Generation in a Fully Developed Laminar Flow through Ducts with Constant Heat Flux

指導教授 : 侯順雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之目的在於利用熱力學第一、第二定律,在定壁面熱通量邊界條件下,探討高寬比( )、角度( )、熱通量( )和截面積( )這四個參數對完全展開層流六角形和梯形截面管路之熵產生的影響,並以熵產生最小的方法,分析在不同的參數下,使熱力系統之熵產生最小的最佳雷諾數,以達到最少的可用能損失。 結果得到:隨著雷諾數 增加,熱傳熵產生 逐漸減少,而摩擦熵產生 逐漸增加。由於Re對 和 為相反的效應,因此,存在一最佳的 值( )使得總熵產生最小。當雷諾數 較小時,流場中熵產生主要來自於有限溫差熱傳所引起的熱力學不可逆;而當雷諾數 較大時,流場中熵產生主要來源則為黏滯摩擦所引起的熱力學不可逆。隨著 逐漸增加,總熵產生(Overall Entropy Generation)先逐漸減少,到達熵產生最低值後,又逐漸增加。 不管六角形管或梯形管,在雷諾數 較大時,熵產生和泵巨滫怬㊣H截面積( )或高寬比( )的遞增而遞減;然而,熵產生卻隨著夾角( )或熱通量( )的增大而增大,且泵母H著 增大或 降低而增大。因此,隨著 或 越大,熵產生最小值(Nsmin)就越小,而其對應之最佳雷諾數 越大。隨著 越大, Nsmin越大,且其對應之 也越大。有趣的是不管六角形管或梯形管,由 到 時,熵產生的最小值Nsmin會先降到最低點,之後,從 到 時,會再漸漸的上升,亦即,當 時,Nsmin值最小。此外,六角形管在夾角 和 的情況下,當 <1時,總熵產生隨 值的增加而減少,並在 =1附近達到最低的總熵產生;之後,當 >1時,總熵產生就轉變為隨 值的增加而增加。

並列摘要


Second law analysis of heat transfer in a fully developed laminar flow through hexagonal and trapezoidal cross-sectional ducts with constant heat flux was studied analytically. The influences of four parameters including aspect ratio ( ), included angle ( ), heat flux ( ), and cross-sectional area ( ) on entropy generation were considered based on entropy generation minimization method. The results show that as Re increases, the entropy generation due to heat transfer irreversibility decreases; the entropy generation due to friction irreversibility increases; the overall entropy generation first decreases, then increases after it achieves the minimum entropy generation. In addition, the optimum Reynolds number ( ) with the minimum entropy generation were reported and discussed. Regardless of hexagonal or trapezoidal cross-sectional ducts, for high Re, both entropy generation and pumping power decrease with the increase of cross-sectional area ( ) or aspect ratio ( ). However, both entropy generation and pumping power increase with included angle ( ). Also, entropy generation increases but pumping power decreases with increasing heat flux ( ). Increase in or results in the decrease of the minimum entropy generation (Nsmin) and the increase of its corresponding . A larger amount of heat flux ( ) leads to greater values of Nsmin and . It is of interest to note that irrespective of hexagonal or trapezoidal cross-sectional ducts, when included angle ranges from to , Nsmin decreases gradually, and then increases form to . In other words, at , the value of Nsmin is the lowest. Furthermore, for hexagonal cross-sectional ducts, as <1, the overall entropy generation decreases with increasing . After Nsmin is obtained at =1, as >1, conversely, the overall entropy generation increases with increasing .

參考文獻


3.Bergles, A. E., “Heat Transfer Enhancement – The Encouragement and Accommodation of High Heat Fluxes,” ASME J. Heat. Transfer, Vol. 119, pp. 8–19, 1997.
4.Dağtekin I., Öztop, H. F. and Şahin, A. Z., “An Analysis of Entropy Generation through a Circular Duct with Different Shaped Longitudinal Fins for Laminar Flow,” Int. J. Heat Mass Transfer, Vol. 48, pp. 171–181, 2005.
5.Alam I. and Ghosdastidar P. S., “A study of Heat Transfer Effectiveness of Circular Tubes with Internal Longitudinal Fins Having Tapered Lateral Profiles,” Int. J. Heat Mass Transfer, Vol. 45, pp. 1371–1376, 2002.
6.Ko, T.H. and Ting, K., “Optimal Reynolds Number for the Fully Developed Laminar Forced Convection in a Helical Coiled Tube,” Energy, Vol. 31, pp. 1806–1816, 2006.
8.Bejan, A., Entropy Generation Minimization, CRC Press, Boca Raton, FL, 1996.

延伸閱讀