由於日益嚴峻的全球暖化問題,節能減碳的議題又再度受到各個國家的重視,世界各國極力推廣及研發高效率馬達,擴大實施馬達最低能效標準(MEPS)政策,在如此趨勢下,高效率馬達為未來市場主流。 因此本文以製造成本為考量,維持原本的製造技術為原則,以既有的感應馬達定子,進行磁鐵輔助同步磁阻馬達設計。由於同步磁阻馬達相較於永磁馬達之功因值較低,因此加入磁鐵輔助以提升其功因,但轉子之設計與磁鐵添加的位置及用量將對輸出性能造成影響,因此交直軸(d-q-axis)電感之比值與差值為其重要之設計參數。 本論文以設計一IE4等級之磁鐵輔助型同步磁阻馬達為研究目標。第一部分對於磁鐵擺放位置及用量對於其效率、轉矩、功因、轉矩漣波之影響,利用有限元素分析(FEA)之軟體JMAG進行分析模擬,第二部分為建立磁鐵輔助型同步磁阻馬達之設計流程,最後以既有的3kW同步磁阻馬達作為實驗目標,進行各項性能模擬與數據驗證,由結果證實,有限元素法(FEA)的分析結果可符合實際馬達實驗測量的特性。
In order to achieve a high –power -factor in SynRM drives, a large saliency ratio (ideally infinity) is required but such design is very difficult. One way to improve the operating performance of SynRM is add a limited amount of permanent magnet into the rotor core. This is called a Permanent Magnet Assisted Synchronous Reluctance (PMa-SynRM). The focus of this paper is the characteristics analysis of d, q axis inductance according to magnetizing direction and quantity of permanent magnet for PMa-SynRM. Because the stator used in an SynRM is the same as that for induction motor, the stator of a 0.75kW three-phase induction motor was used for design the 0.75kW SynRM in this study. An SynRM rotor structure design process is presented. In addition, the simulations of torque, torque ripple, current, speed, power factor and efficiency are conducted by finite element analysis (FEA). The thesis then employed an existing 3 kW SynRM as the experimental objective, to verify the simulation correctness. The test results agreed with the FEA.