透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

差分方程之解空間中的速返斥子與混沌動態

Snap-back Repellers and Chaotic Dynamics in Solution Spaces of Difference Equations

指導教授 : 李明佳

摘要


本篇論文研究內容是差分方程導出之動態系統的混沌行為。我們對於差分方程定義了速返斥子(snap-back repeller),並證明其存在蘊含系統的混沌動態。此外,我們證明這樣的動態在微小C¹-擾動下是持續的。關於混沌動態,我們所指的是差分方程之解空間包含一個緊緻子集,使得移位映射在其上有正的拓樸熵。

並列摘要


This thesis is a study of chaotic behavior for dynamical systems derived from difference equations. We define a snap-back repeller for a difference equation and show that its existence implies chaotic dynamics on the system. Moreover, we show that this chaotic dynamics is persistent under small C¹-perturbation. By chaotic dynamics, we mean that the solution space of a difference equation contains a compact subset on which the shift map has positive topological entropy.

參考文獻


[1] L. Block, J. Guckenheimer, M. Misiurewicz, L. S. Young, "Periodic points and topological entropy of one dimensional maps", Global Theory of Dynamical Systems, Proceedings, pp. 18-34, North-Western, 1979.
[2] R. Bowen, "Topological entropy and Axiom A. Global Analysis", Proc. Sympos. Pure
Math., Amer. Math. Soc., 14, pp. 23-42, 1970.
[3] L.E.J. Brouwer, "Beweis der Invarianz des n-dimensionalen Gebiets", Mathematische
Annalen, 71, pp. 305-315, 1912; see also 72, pp. 55-56, 1912.

延伸閱讀