本論文針對燃料電池的電能輸出特性,提出一種新式的並聯控制電路方案,目的是解決傳統並聯控制電路無法制定輸入電源的操作點問題。該控制電路採用傳統的直流/直流轉換器升壓方法,並且搭配提出的功率回授控制方法、穩定度控制器設計方法、特性補償控制器設計方法與負載分配控制器設計方法來達成:(1)規劃燃料電池的電能輸出規格;(2)分配負載改變時的燃料電池電能輸出能力。 模擬結果指出,在負載功率為2W的狀況下,指定燃料電池#1與#2的輸出功率為1.2W與0.8W時,提出的並聯控制電路確實能夠將燃料電池#1與#2的輸出功率控制在1.2768W與0.7801W,誤差分別是6.4%與2.48%。另外,在負載改變的狀況下,負載功率變為2.5W,加上特性補償控制器,期望燃料電池#1與#2需各別負擔變化後的功率比例為1:1,而模擬結果為1:1.008,誤差是0.8%。 由實驗結果得知,在規劃燃料電池的電能輸出規格部分,當設計負載功率為2W、燃料電池#1與#2的輸出功率分別為1.2W與0.8W時,提出的並聯控制電路確實能夠將燃料電池#1與#2的輸出功率控制在1.353W與0.952W,誤差分別是12.75%與19%。而在分配負載改變量至燃料電池#1與#2的部分,負載功率變為2.5W,加上特性補償控制器後,當設計負載改變量至燃料電池#1與#2的比例為1:1時,實驗結果指出功率分配比例以1:1.034分配至燃料電池#1與#2,其誤差是3.42%。 由模擬結果與實驗結果可知,本研究提出的新式並聯控制電路方案除了能改善傳統並聯控制電路無法制定輸入電源的操作點問題之外,還能規劃負載變動時,額外的負載功率分配至並聯電路架構中的燃料電池比例。
This thesis proposes a new parallel control circuit scheme, which aims to solve the problem that the traditional parallel control circuit can not set the operating point of the input power. The control circuit adopts the traditional DC/DC converter and is matched with the proposed power feedback control method, stability controller design method, characteristic compensation controller design method and load distribution controller design method. With these methods to reach: (1) Plan the fuel cell's power output specification (2) The fuel cell's power output capability when the load is changed. The simulation results indicate that when the default power of the specified fuel cell1 and cell2 is 1.2W and 0.8W under the condition of load power of 2W, the proposed parallel control circuit can control the output power of the fuel cell1 and cell2 at 1.2768W and 0.7801W, the errors are 6.4% and 2.48%. In addition, when the load power changes to 2.5W and the characteristic compensation controller is added, the ratio of the extra power of fuel cell1 and cell2 is expected to be 1:1 after load change, while the simulation result is 1:1.008 and the error is 0.8%. The experimental results show that in the planning of fuel cell power output specifications. When the load power is 2W and the default power of fuel cell1 and cell2 is 1.2W and 0.8W, the proposed parallel control circuit can indeed control the output power of fuel cell1 and cell2 to 1.353W and 0.95W, with errors are 12.75% and 19%, respectively. In the part where the load change amount is distributed to the fuel cell1 and cell2, the load power becomes 2.5 W, and the characteristic compensation controller is added, when the load change amount is designed to the ratio of the fuel cell1 and cell2 is 1:1. The experimental results indicate that the power the power allocation ratio is 1:1.034 to fuel cell 1 and 2 with an error is 3.42%. From the simulation results and experimental results, the new parallel control circuit scheme proposed in this thesis can not only improve the operation point of the input power supply in the traditional parallel control circuit, but also plan the additional load power distribution to the parallel circuit architecture when the load changes.