The goal of this thesis is investigation of Fixed-Point implementation of GMM (Gaussian Mixture Modeling). It must be done before hardware implementation or porting to embedded system. We implement it for several data types of GMM in PC and Fixed-Point parameters of GMM then compare its speed of image processing, memory size and recognition precision of foreground objects with the result after Fixed-Point. We provide a data type of parameters that can keep high precision and down size memory. After Fixed-Point implementation of GMM, it can save developing time and a lot memory when implementing the hardware of GMM or porting GMM to embedded system.