透過您的圖書館登入
IP:216.73.216.40
  • 學位論文

台灣5G相關產業股票報酬的分析與預測:基於機器學習方法

Analysis and Forecast of Stock Return for Taiwan’s 5G Related Industry: A Machine Learning Approach

指導教授 : 包曉天
本文將於2025/07/13開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本研究以台灣5G相關產業公司2015/07至2018/12資料為基礎,建構線性之固定效果面板迴歸模型與非線性之極限梯度提升樹模型(XGBoost)以探討總體經濟面、個別公司面與籌碼面對股票報酬之影響,並比較線性與非線性模型結論之差異。研究結果顯示,不論在線性或非線性模型,籌碼面對股票報酬影響皆最大,本研究推測原因為5G產業較具未來前景,儘管基本面不好,投資人仍願意給予較高的估值並進場購買,導致籌碼面影響最大;而總體經濟面與個別公司面在線性與非線性模型中對股票報酬有不同的影響,在非線性模型中,總體經濟面重要因子平均增益大於個別公司面,對股票報酬影響較大。此外,本研究加入技術分析面建構極限梯度提升樹預測模型,對未來一個月股票之漲跌進行預測,其模型預測能力於樣本內獲得87.14%的準確度,而樣本外獲得56.52%的準確度。

並列摘要


This study builds a linear fixed-effect panel regression model and nonlinear extreme gradient boosting tree model on Taiwan’s 5G related companies, data period is from 2015/07 to 2018/12, study the impact of economic factor, company factor and chip factor on stock return. The results show that whether in linear or nonlinear model, chip factor has the greatest impact on stock return. This study speculates that the reason chip factor has the greatest impact on stock return is that 5G industry is a promising industry, although weak fundamentals, investors are still willing to give a high valuation and enter the market. While economic factor and company factor have different impact on stock return in linear and nonlinear model, in nonlinear model, economic factor has more impact on stock return than company factor because of greater average gain. Additionally, this study constructs an extreme gradient boosting tree model to predict whether stock rise or fall in the next month by join the technical analysis factor, the model achieved 87.14% accuracy from in-sample forecast and 56.52% from out-of-sample forecast.

參考文獻


中文部分
張愷凌、王淑芬(2009)。景氣循環, 總體經濟變數與台灣股價指數的關係性研究。國立交通大學,新竹市。
傅上福(2016)。股價低於面額或淨值之特徵與未來股票報酬率之關聯性 - 以台灣市場為例。國立台灣大學,台北市。
鄭高輯、林泉源(2010)。投資人情緒對投機型股票報酬之影響。商略學報,2(1),21-35。
英文部分

延伸閱讀