透過您的圖書館登入
IP:216.73.216.237
  • 學位論文

利用塔姆電漿極化子進行光學相位檢測的氫氣感測器

Tamm Plasmon Polaritons for Hydrogen Sensors by Using Phase Detection

指導教授 : 陳國平

摘要


在過去的研究中,利用一維光子晶體鍍上金屬可以在頻譜上觀察到塔姆電漿極化子(TPP)共振。 TPP在特定波長下產生接近於零的反射結果,從而在相同波長下產生劇烈的相位變化。本研究利用相位的急劇變化提供了一種有用的感測機制,可實現更高靈敏度的光學感測器。通入氫氣時,鈀會改變其光學和結構性質,進而造成反射率以及相位的改變。 此外,我們使用Mach-Zehnder干涉儀產生干涉圖形,從圖形可以觀察到暴露於氫氣時的相變。 在模擬上,我們使用matlab來模擬干涉圖形,最後的實驗結果與模擬有很好的相似性。

並列摘要


Tamm plasmon polariton (TPP) resonance is observed in the band gap of 1D photonic crystal coating with metals. TPP produces near-zero reflection at the resonance wavelengths, resulting in dramatic phase changes. The sharp variations in the phase provide an useful transduction mechanism to achieve optical sensing with higher sensitivity. In this work, palladium is used as the metal film which could change the optical and structural properties when hydrogen is loading. Besides, the Mach-Zehnder interferometer is built to generate the interference patterns, which can visualize the phase change when exposuring to the hydrogen. In the modeling, we use the matlab to simulate the interference pattern, which has the great correspondence to the experiment results.

參考文獻


[1] Z. Han, J. Ren, J. Zhou, S. Zhang, Z. Zhang, L. Yang, et al., "Multilayer porous Pd-WO3 composite thin films prepared by sol-gel process for hydrogen sensing," International Journal of Hydrogen Energy, vol. 45, pp. 7223-7233, 2020.
[2] Y. Zheng, S. Zhao, and J. Bao, "Trainable hydrogen sensing of palladium nanoparticles on polyvinylidene fluoride nanofibers: Effects of dynamic mechanics," Sensors and Actuators B: Chemical, vol. 320, p. 128371, 2020.
[3] S. V. Boriskina and Y. Tsurimaki, "Sensitive singular-phase optical detection without phase measurements with Tamm plasmons," Journal of Physics: Condensed Matter, vol. 30, p. 224003, 2018.
[4] Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, et al., "Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection," ACS Photonics, vol. 5, pp. 929-938, 2018.
[5] C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide," Physical review letters, vol. 85, p. 1012, 2000.

延伸閱讀