透過您的圖書館登入
IP:3.142.131.56
  • 學位論文

氧化亞銅金屬納米粒子的製備與鑑定

Preparation and Characterization of Copper(I) Oxide Nanoparticles

指導教授 : 吉凱明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文主要利用熱分解有機金屬前驅物的方法,製備氧化亞銅奈米粒子。我們選用(hfac)Cu(COD)做為前驅物,在有機相中將金屬鹽類還原成銅奈米粒子,反應完後靜置空氣中被氧化形成氧化亞銅奈米粒子,此反應使用不同介面活性劑來保護粒子,增加粒子的穩定性和分散性,藉由調控前驅物與界面活性劑莫耳比、反應溫度、反應時間等,試圖控制奈米粒子的形狀和大小,進而得到具有單一性和分散性的奈米粒子。使用不同胺類當界面活性劑時,可以合成出粒徑為9 nm和10 nm的氧化亞銅奈米粒子並合成出粒徑為5 nm的氧化銅奈米粒子,使用高分子(Polyvinylpyrrolidone)當界面活性劑時,可以合成出15 nm的氧化亞銅奈米粒子。 組成鑑定方面,主要是利用穿透式電子顯微鏡(TEM)來觀察奈米粒子的形貌與大小,並利用能量分散光譜儀(EDS)、X-ray粉末繞射(XRD)、電子繞射光譜儀(ED)來鑑定奈米材料結構組成,藉由X-ray光電子能階譜(XPS)來分析銅奈米粒子的價數,證實所製備的奈米粒子。確實為氧化亞銅奈米粒子。

關鍵字

奈米粒子 氧化銅 氧化亞銅

並列摘要


The main focus of this thesis is to prepare cuprous oxide nanoparticles by thermal decomposition of organometallic precursor, namely (hfac)Cu(COD). The precursors were dissolved in the organic solvent and were reduced to produce copper nanoparticles then to stand in air after being oxidized to the cuprous oxide nanoparticles. Variety of surfactants have been used in order to get the nanoparticles of the desired shape and size distribution. Some factors like precursor to surfactant molar ratio, reaction temperature, reaction time are modified in order to study the uniformity and dispersion of nanoparticles. We use different amines as surfactants to generate 9 nm and 10 nm cuprous oxide nanoparticles and to generate 5 nm cupric oxide nanoparticles. We use polyvinylpyrrolidone as surfactant to generate 15 nm cuprous oxide nanoparticles. In structural analysis, we observed the shape and the size of nanoparticles by transmission electron microscopy (TEM). We used energy dispersive spectroscopy (EDS), X-ray powder diffractometer (XRD) and electron diffractometer to identify composition of nanoparticles. The X-ray photoelectron spectroscopy was used to confirm the composition of nanomaterials. In our study, we confirmed these products are Copper(Ι) oxide.

並列關鍵字

nanoparticles Cupric Oxide Cuprous Oxide

參考文獻


5. Ramakrishna, G.; Das, A.; Ghosh, H. N. Langmuir. 2004, 20, 1430-1435.
6. Alivisatos, A. P. Science 1996, 271, 933-937.
7. Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648-8649.
8. Kawabata, A.; Kubo, R. J. Phys. Soc. Jpn. 1996, 21, 1765-1772.
9. Casula, M. F.; Corrias, A. Chem. Mater. 2003, 15, 2201-2207.

延伸閱讀