透過您的圖書館登入
IP:216.73.216.156
  • 學位論文

上三角矩陣環上具有交換跡的雙加性函數

Commuting Traces of Biadditive Maps On Upper Triangular Matrix Rings

指導教授 : 劉承楷

摘要


設R是一個環,n是一個大於1的整數,Tn(R)是以R為係數的nxn的上三角矩陣環。本篇論文主要的結果是刻畫Tn(R)n上具有交換跡之雙加性函數的結構定理。運用此定理,我們給出T(R)n上保持交換性加性函數的完整描述。

關鍵字

上三角矩陣環

並列摘要


Let R be a ring and let Tn(R) be the nxn upper triangular matrix ring over R , where n is an integer with n≥2 . We determine the form of a biadditive map B:Tn(R) x Tn(R) → Tn(R) which satisfies [B(x,x),x]=0 for all x belong to Tn(R).As an application, we characterize commutativity preserving additive maps on Tn(R).

參考文獻


[1] D. Benkovi•c and D. Eremita, Commuting traces and commutativity preserving maps on triangular algebras, J. Algebra 280 (2004), 797-824.
[2] M. Bre•sar, Centralizing mappings and derivations in prime rings, J. Algebra 156
(1993), 385-394.
[3] M. Bre•sar, Commuting traces of biadditive mappings, commutativity-preserving map-pings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
[4] M. Bre•sar and P. •Semrl, Commuting traces of biadditive maps revisited, Comm. Al-gebra 31 (2003), 381-388.

延伸閱讀