本研究利用微機電(Micro-Electro-Mechanical System, MEMS)製程技術設計並製作出霍爾感測器,以P型矽(Si)基板為基礎,上方使用高密度電漿化學氣相沉積系統(High Density Plasma Chemical Vapor Deposition)沉積二氧化矽(SiO2)作為隔絕層後,以離子佈植(Ion implanter)在矽基板上佈植磷離子,經由退火處理活化離子並修復基板損傷,最後利用電子束蒸鍍法(Electron Beam Evaporation, EBE)沉積黃金作為感測器之導線。 本研究製作的感測器會因磁場變化產生霍爾效應(Hall effect),而載子偏移產生的電壓稱為霍爾電壓。以釹鐵硼磁鐵作為磁場源,調整距離進行多次磁場與霍爾電壓量測,可觀察其對於磁場之靈敏度。並以MEGA2560開發版搭配電磁鐵模組測試其響應速度。本研究設計四種同長寬比但不同尺寸的十字形霍爾感測器,經數據比對發現其靈敏度與響應速度均無太大差異,但是反應區尺寸越小之感測器,未通磁時的霍爾電壓輸出會越接近理論值。將最佳尺寸感測器重新設計電極,使其擁有更小的封裝尺寸,並搭配3D列印外殼組成3 × 3霍爾陣列模組,能夠將量測數據轉換為色階分佈圖出快速分析出測試試片上的磁場分佈情形。
The objective of this study is to design and fabricate Hall Sensors with MEMS technology. Their structure consist of P-type silicon substrates and SiO2 isolation layers deposited by High Density Plasma Chemical Vapor Deposition(HDPCVD) andphosphorus ion implanted layers. Finally, gold wires are deposited as signal leads by Electron Beam Evaporation (EBE). As the fabricated sensor is near a magnet, its magnetic field changes due to the Hall Effect caused by moving carriers, wherea Hall voltage can be measured. In the study, four kinds of cross Hall sensors are designed and fabricated. They have identical aspect ratio but different sizes. Their sensitivities and response time are almost the same.But the performance smallest sensor is the closest to the theoretical unbalanced voltage. 3D printed frames are assembled with 3 × 3 array modules. The measurement data is converted into a contour map to quickly analyze the magnetic field distribution.