在現代農業中的農業設施作業仍然無法像傳統室外農業作業使用農 業機械進行大規模種植,使得在農業設施內仍需要大量使用人力來進行 作業,這樣的措施導致了從業人員在進行農業設施內作業的過程中無形 加速了職業傷害的累積以及經由長時間的作業之下作業效率的降低。因 此本研究將整合現有之室內定位系統結合自走載具開發出農業作業的自 走載具載台系統,藉由室內定位系統與慣性感測器提供自走載具在定位 系統所界定的定位範圍中之位置及姿態,做為載具自走移動的資料依據 與處理, 計算所需移動距離及偏擺角度後進行自走移動,透過回授計算 來持續修正自走載具的移動路線直至到達目標座標。 本研究將超寬頻定位系統、慣性感測器及可程式控制器整合於輪式 載具上,並透過上位機進行通訊連接,利用 Visual Studio C#程式語言撰 寫自走載具系統之人機介面及控制函式,達成系統整合之要求,自走載 具系統整合後之結果能夠實現在定位系統所標定之範圍內進行自走移 動,並可成為在農業作業中之應用。 實驗結果顯示自走載具在定位系統中的 X 軸及 Y 軸定位誤差百分比 分別為 10.19%以及 10.99%; 由於各個馬達雖然規格相同,但在內部結 構仍有些微差異導致在 PWM 轉速控制中,產生轉速不同之情況, 藉由 改變 PWM 寬度來調整馬達輸出來校正轉速, 使其輸出轉速一致。在載 具自走移動的方面,自走載具可以達成點位移動之功能並且能夠持續回 授計算對自走載具移動路線的修正,直至到達目的地座標。 關鍵字: 超寬頻定位、自走載具、脈波寬度調變
In modern agriculture, operations within agricultural facilities still cannot utilize agricultural machinery for large-scale planting as effectively as traditional outdoor farming. Consequently, a significant amount of manual labor is still required for tasks within these facilities. This reliance on manual labor accelerates the accumulation of occupational injuries and decreases operational efficiency over time. Therefore, this study aims to integrate existing indoor positioning systems with autonomous vehicles to develop a platform system for agricultural operations. The indoor positioning system, combined with inertial sensors, provides the autonomous vehicle with positional and attitudinal data within the defined positioning range. This data is used as the basis for processing and autonomous movement of the vehicle. By selecting the target coordinates and calculating the distance and yaw angle, the vehicle autonomously moves towards the target. Continuous feedback calculations are employed to correct the movement route of the autonomous vehicle until it reaches the designated coordinates. This study integrates an ultra-wideband positioning system, inertial sensors, and a programmable controller onto a wheeled vehicle, establishing communication with a host computer. Using Visual Studio 2019, the humanmachine interface and control functions of the autonomous vehicle system were developed to meet the requirements of system integration. The results show that the integrated autonomous vehicle system can perform autonomous movements within the specified range of the positioning system and can be applied to agricultural operations. Experimental results indicate that theIII positioning errors of the autonomous vehicle in the X-axis and Y-axis within the positioning system are 10.19% and 10.99%, respectively. Although the motors have the same specifications, slight differences in their internal structures cause variations in rotational speeds under PWM control. By adjusting the PWM width to calibrate the motor output, consistent rotational speeds are achieved. In terms of autonomous movement, the vehicle can achieve point-to-point movement and continuously correct its route until it reaches the target coordinates. Keywords: Ultra-wideband Positioning, Autonomous Vehicle, Pulse-width modulation