本研究為銅柱狀凸塊構裝(Copper pillar bump package)以晶片朝下的方向掉落進行有限元素之結構應力分析,並針對晶片厚度、膠材厚度與膠材楊氏模數,探討晶片朝下掉落對銅柱狀凸塊構裝結構應力之影響,同時找出最佳化參數。 由模擬結果得知,未填入膠材之構裝體中,減少晶片的厚度能降低銅凸塊受到的應力值,代表構裝重量的改變會影響掉落撞擊時受到的應力。構裝體在填入高分子膠材後,銅凸塊所受到的應力值大幅下降,晶片上方及晶片與基板間填入高分子膠材後,在掉落撞擊中可以分散構裝體所受到的衝擊應力。 改變晶片上方膠材的厚度時,膠材厚度的增加,可以使晶片朝下的撞擊中能有效降低撞擊時產生的衝擊應力,但膠材厚度增加到375μm以上,應力的下降已趨於平緩。膠材楊氏模數的數值越低,構裝體的受到結構應力也隨之降低,越低的楊氏模數,其膠材越軟越能降低構裝體受到的衝擊應力。將各參數應力最低值之模型作為最佳化模型的設計進行分析,並與未填入膠材原始模型進行比較,應力值減少原始模型應力值的92.4%。
This study conducts finite element analysis on copper pillar bump packages to analyze the structural stress when the chip falls in a face-down direction. The parameters changed in the analysis include chip thickness, underfill thickness, and Young's modulus of the underfill. The study aims to understand the effects of chip thickness, underfill thickness and Young’s modulus of underfill on the structural stress for a dropped copper pillar bump package with chip facing downwards and identify the optimal parameters for change. Simulation results indicate that in packages without underfill, reducing the chip thickness decreases the stress on the copper bumps, indicating that package weight changes affect the stress experienced during a drop impact. When polymer underfill is added to the package, the stress on the copper bumps significantly decreases. Because this study simulates a face-down drop, the polymer underfill between the chip and the substrate can disperse the impact stress on the package. Increasing the underfill thickness above the chip reduces the impact stress effectively during a face-down drop, but the stress reduction becomes less significant when the underfill thickness exceeds 375μm. Regarding the Young's modulus of the underfill, lower values result in lower structural stress on the package. Softer underfills with lower Young's modulus better reduce impact stress. An optimal model design based on the lowest stress values for each parameter was analyzed and compared to the original model without underfill, resulting in a stress reduction to 92.4% of the original model's stress.