透過您的圖書館登入
IP:3.140.195.167
  • 學位論文

應用智慧影像提升SCARA機械手臂置放DIP元件於PCB之準確率研究

An Investigation on Enhanced Intelligent Image System with SCARA Robot for Improving the Accuracy of DIP Component Placed on PCB

指導教授 : 徐祥禎

摘要


本研究主要是針對原本使用教導式SCARA機械手臂與加入座標自動演算式SCARA機械手臂,在PCB(Printed Circuit Board) DIP(Dual In line Package)零件置件準確率的比較。 教導式機械手臂是以輸入Pulse的方式慢慢移動機械手臂X、Y達置件位置,並將數值記錄後,依序key in各軸Pulse使機械手臂具有到達到指定位置置放零件的功能。而座標自動演算式是以攝影機拍攝PCB 定位點,將圖像傳達給電腦做影像分析,進而演算影像座標,並透過座標平移、旋轉及反向運動學推導轉換為置件所需的X、Y軸角度,以達到機械手臂具有到達指定座標位置置放零件的功能。 本研究中參考SMD(Surface Mount Device)打件機設備影像定位方式,利用機械視覺提升教導式機械手臂在DIP零件置件準確率。並使用反向運動學作為機械手臂置件位置定位座標的基礎演算,使設備更加智慧化,同時讓使用人員在操控上更容易上手。

並列摘要


The objective of this study is to improve the accuracy of pick-n-place the DIP (Dual In line Package) component of SMT (Surface Mount Technology) on PCB (Print Circuit Board) by the SCARA robot with coordinate auto-compensation technique. Teach-Mode robot picks up the SMT component from the original position and moves to the placement position by input the pulse. The data of the transformation of coordinates are then recorded and sequentially keyed-in each axis’s pulse to reach the specified position. The machine vision system developed in this research is using video cameras to photo the anchor points on PCB, feedback the images to computational system, calculate coordinate compensation by transformation, rotation and inverse-kinematics. The determined x-y position and rotation angle can then be applied to the precise location for the SCARA robot. In this study, the image-positioned system of pick-n-place SMD (Surface Mount Device) is referred to develop a new machine vision system. Robotic movement and position are auto-calculated based on inverse kinematics with enhanced intelligent image system. Experimental results demonstrate the accuracy of DIP component placed on PCB has been dramatically improved.

參考文獻


[2]Linda G. Shapiro and George C. Stockman (2001). Computer Vision. Prentice Hall.
[4]Bernd Jahne and Horst HauBecker (2000). Computer Vision and Applications, A Guide for Students and Practitioners. Academic Press.
[9] Cheng-Hao Huang, Chi-Sheng Hsu, Po-Chien Tsai, Rong-Jyue Wang, and Wen-June Wang, “Vision Based 3-D Position Control for a Robot Arm, ” SMC, IEEE. ,pp. 1699-1703,2011
[15]P.K.Sahoo,S.soltani,and A.K.C.Wang,“A survey of thresholding techniques,”computer Vision,Graphics,and image processing,vo1.41,pp.233-260,1988
[1]Reinhard Klette (2014). Concise Computer Vision. Springer.

延伸閱讀