透過您的圖書館登入
IP:216.73.216.184
  • 學位論文

應用擴展卡爾曼濾波器進行電力系統狀態估測

Apply the Extended Kalman Filter to Estimate Power System States

指導教授 : 林堉仁
本文將於2026/07/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文應用擴展卡爾曼濾波器(EKF)進行電力系統狀態估測。電力系統狀態估測是指對電力系統的各個節點的狀態進行估測,如電壓值和相位角。卡爾曼濾波器在雷達跟踪和火箭跟踪等領域中被廣泛使用。由於卡爾曼濾波器只適用於線性系統,因此擴展卡爾曼濾波器在處理非線性系統方面優於卡爾曼濾波器。本論文考慮了各種EKF 設置和不同的設計參數,用以評估電力系統狀態估測。在模擬上,會以一個包含五個匯流排的測試系統和24 小時負載變動作為EKF 的估測狀態。通過電腦模擬來驗證估測性能。

並列摘要


This thesis applies the extended Kalman filter (EKF) to estimate power system states. Power system state estimation refers to estimate power system algebraic state variables such as voltage magnitudes and phase angles. Kalman filter is commonly seen in radar tracking and rocket tracking applications. Extended Kalman filter is superior to Kalman filter in that the former can handle nonlinear system but the latter is suitable to linear system. This thesis considers various EKF settings and different design parameters to evaluate power system states estimation. This thesis takes a five-bus power system with 24-hour load profile as an example for EKF and its various parameters settings to estimate state. Comprehensive computer simulations will justify the estimation performance.

參考文獻


[1] R. A. Schlueter and G. L. Park, "Least squares models for power systems," 1974 IEEE Conference on Decision and Control including the 13th Symposium on Adaptive Processes, Phoenix, AZ, USA, 1974, pp. 574-578, doi:10.1109/CDC.1974.270503.
[2] T. A. Stuart and C. J. Herczet, "A Sensitivity Analysis of Weighted Least Squares State Estimation for Power Systems," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-92, no. 5, pp. 1696-1701, Sept. 1973, doi:10.1109/TPAS.1973.293718.
[3] M. K. Celik and W. . -H. E. Liu, "An incremental measurement placement algorithm for state estimation," in IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1698-1703, Aug. 1995, doi: 10.1109/59.466471.
[4] 黃小平,王岩(2015)。卡爾曼濾波原理及應用:MATLAB 仿真。電子工業出版社
[5] L.Yaojun, P. Quan, Z. Chunhui and Y. Feng, "Scene matching based EKF-SLAM visual navigation," Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, pp. 5094-5099, December 2012.

延伸閱讀