透過您的圖書館登入
IP:13.58.187.108
  • 學位論文

微米級銅線在軟性中介層之研究

The study of micro-scale Cu Metallization on flexible interposer

指導教授 : 黃有榕

摘要


隨著科技化電子產品的不斷創新,不論在3C產品或照明、大型LED顯示看板等,都朝著軟性、輕量化和小體積的方向發展,因此必須使用大量的軟性基板。日益增加的市場對便攜式電子設備已導致對撓性基板同樣的大量需求,可撓性覆銅層壓板(FCCL)是其中最流行的。一個典型的FCCL構造包括聚酰亞胺(PI)襯底,薄金屬粘結層,一個銅種子層,和一層電沉積。所以低可靠性的銅/PI介面層是由於PI上的銅無法形成牢固的化學鍵。為了提高界面的密合強度,通常沉積在銅/ PI界面附加粘合層金屬層。粘合層的材料包括鉻和銅鎳合金,鎳系合金。銅種子層的目的是為了提供足夠的導電性,以允許電鍍到最終銅厚度。有關FCCL表面圖案,它通常是通過使用光刻與Cu層的濕蝕刻來執行。 本論文為了製造柔性微電子器件的金屬化線和金屬電極的柔性基板上製造。為最大限度地減少設備的尺寸,實現金屬化線用幾微米的柔性基板上的刻度是非常重要的。在這項研究中,脈衝電鍍與直流電鍍已經以金屬化的PI表面和Cu施加。微觀尺度的精細圖案(<50微米)上的PI基板銅金屬化工藝進行說明。

並列摘要


The ever-increasing market for portable electronic devices has resulted in an equally heavy demand for flexible substrate, flexible copper clad laminate (FCCL) being among the most popular. A typical FCCL construction includes a polyimide (PI) substrate, a thin metal tiecoat, a copper seedcoat, and a layer of electrodeposited copper. The low Cu/PI interface reliability is due to the fact that Cu cannot form a strong chemical bond with the constituent elements of the PI. In order to improve the interface adhesion strength, an additional tiecoat metal layer is generally deposited at the Cu/PI interface. Tiecoat materials include chromium and monel, a nickel based alloy. The purpose of the copper seedcoat is to provide sufficient electrical conductivity to permit electroplating to final copper thickness. For surface patterning on FCCL, it is usually performed by using photolithography and wet etching of the Cu layer. In order to fabricate flexible microelectronic devices, fabrication of metallization lines and metal electrodes on the flexible substrate is essential. For minimizing the size of device, the realization of metallization lines with the scale of a few micrometers on the flexible substrate is very important. In this study, pulse electroplating has been applied in order to metalize PI surfaces with Cu. The micro-scale fine patterns (<50μm) Cu metallization processes on PI substrate is described.

參考文獻


[1] G. E. MOORE, “Cramming More Components onto Integrated Circuits”, in Proc. of The IEEE, VOL 86, NO.1, Jan. 1998, pp.82-85.
[2] E. Mattsson and J. O’M. Bockris, Trans. Faraday Soc, 55, 1586(1959).
[3] A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980.
[4] M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, Wiley, New York, 1998 and 2006.
[5] W. Lorenz, Z. Phys. Chem., 202B, 275 (1953).

延伸閱讀