透過您的圖書館登入
IP:216.73.216.23
  • 學位論文

具備絕緣體上砷化鎵結構磷化銦鎵金氧半高電子遷移率電晶體之溫度效應

Thermal Effect of InGaP Metal-Oxide-Semiconductor High-Electron-Mobility-Transistor with GaAs on Insulator (GOI)

指導教授 : 李冠慰

摘要


本研究中同時使用液相氧化法(LPO)作為絕緣體上砷化鎵(GOI)與磷化銦鎵/砷化銦鎵金氧半高電子遷移率電晶體之閘極絕緣層的研究。 就直流特性而言,絕緣體上砷化鎵金氧半高電子遷移率電晶體(MOSHEMT with GOI),當最大閘極操作偏壓為1.5 V時,最大汲極飽和電流為288 mA/mm,最大轉導為177 mS/mm,次臨界擺幅分別在VDS= 1.1 V及 0.1 V為99 mV/dec及110 mV/dec,兩端反向崩潰電壓為 -12.5 V,高低頻方面,fT及fmax 分別為 9.9 GHz 及18.5 GHz,低頻雜訊在10 Hz約為10-15 V2/Hz。此外,元件在操作應用中常常會是不同溫度環境下進行,為了探討元件在不同溫度下之特性,本實驗亦加入變溫測量(250 K至350 K ),實驗結果顯示,在溫度250K時高頻量測fT及fmax 分別為 8 GHz 及21 GHz、350K時分別為6 GHz 及16 GHz,結果均高於砷化鎵高電子遷移率電晶體(HEMT with GOI),顯示出LPO不僅可以改善導通電壓、亦改善高頻及低頻雜訊。 最後,無論在電性亦或是在熱效應下,MOSHEMT with GOI皆顯示出高速及低雜訊之潛力。

並列摘要


In this study, liquid phase oxidation (LPO) method was used for InGaP/InGaAs metal-oxide-semiconductor high-electron-mobility-transistor (MOSHEMT) and GaAs on insulator (GOI) process. For DC characteristics, the maximum drain saturation current (ID,max) is 288 mA/mm. The maximum transconductance (gm,max) is 177 mS/mm, and the subthreshold swing (SS) is 99 mV/dec and 110 mV/dec, respectively. Two terminal breakdown for reverse voltage is -12.5 V. High frequency and low flicker noise also measurement. For fT and fmax are 9.9 GHz and 18.5 GHz, respectively. Low flicker noise is about 10-15 V2/Hz. In addition, In order to investigate the characteristics of components at different temperatures, the experiment also adds different temperature measurement (250 K to 350 K) to discuss the effect of devices on different temperatures. The fT and fmax are 8 GHz and 21 GHz at 250 K and 6 GHz and 16 GHz at 350 K, respectively. The results all high than HEMT with GOI indicated that MOSHEMT structure not only improve the gate leakage current and turn-on voltage but also improve the high frequency and low flicker noise by LPO process. Finally, it was found MOSHEMT with GOI applied in comparison to HEMT with GOI by LPO process, whether under electrical properties or thermal effect, all show promising for high speed and low noise application.

參考文獻


[1] T. Mimura, “The early history of the high electron mobility transistor (HEMT),” IEEE Transactions on Microwave Theory and Techniques, vol. 50, N0.3, Mar. 2002.
[2] Y. Konishi, “Special issue on satellite broadcasting,” IEEE Transactions on Broadcasting, vol. 34, N0.4, Dec. 1988.
[3] K. Joshin, N. Hidaka, and K. Hikosaka, “A high-gain HEMT monolithic down converter for X-band direct broadcast satellite applications,” IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, California, 1993, pp.229-232.
[4] K. W. Lee, P. W. Sze, Y. J. Lin, Y. J. Yang, M. P. Houng, and Y. H. Wang, “InGaP/InGaAs metal-oxide semiconductor pseudomorphic high-electron-mobility tansistor with a liquid-phase-oxidized InGaP as gate dielectric, ” IEEE Electron Device Lett, vol. 26, pp. 864-866, 2005.
[5] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “AlGaAs/InGaA s metal-oxide-semiconductor pseudomorphic high-electron–mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005.

延伸閱讀