現今,以生物辨識做為身分識別越來越被被人們所接受,例如:指紋、掌紋、虹膜、臉部等特徵都可以做為辨識依據,其中手部辨識擁有高度方便性,未來勢必以手部辨識為主。 本研究將實作一個掌紋辨識系統,並且提出一些新的想法用於掌紋辨識,首先改進USAN這個擷取掌紋的方法,再提出一個快速搜尋掌紋主線的方法,並且利用簡單線性迴歸將掌紋特徵數值化。辨識系統使用USAN將原始掌紋影像轉換成一個三維空間,稱為USANarea,再使用threshold將掌紋擷取出來,擷取出來的掌紋經過去雜訊與close處理後,轉換成以線段表示的圖形,再搜尋出三條掌紋主線,掌紋主線分別經過簡單線性迴歸分析,最後整張手掌影像將以六個參數代表,大幅降低資料庫的複雜度,處理過程儘量減少複雜的運算,整個辨識過程可real-time完成。本研究以實際手掌影像進行實驗,並且將辨識率與執行時間與其他研究做比較。
This paper proposes a palmprint recognition method based on simple linear regressionto typical principal lines on a palm. By USAN line finder, the original palmprintimages are transformed into a three dimensional space, called “USAN area”, whichcan extract palmprint by threshold. Then, palmprint are classified into three typicalprincipal lines and several wrinkles.Finally, typical principal lines are fit into linefunctions respectively, which represent features of a palmprint image. Thus, we can usesix floating points to represent the global pattern of one palmprint image. Complexityof database can be simplified effectively.