本研究發展出新的誤差評估方法,在不參照解析解的情況下,獲得邊界元素法的最佳元素數目。藉由使用Treffl位完全黨合函數來創造新的解析解,立主比較此新的解析解,我們可以得到邊界元素法在不前元素下的收斂行為分析。我們發展一套率統化的誤差評估技術來搜尋邊界元素法的最佳元素數目,最後提供數值奈何證明在無需解析解的情況下,所投出的車統化誤差評估技術的有效性和準確性。
In this study, we develop a novel estimation techniqueto obtain the optimal number of elements in the boundaryelement method (BEM) without having analytical solution. Byusing the complete Trefftz set as the analytical solution,namely quasi-analytical solution, the new error estimator ispresented in the paper. The error curve versus differentnumber of elements can be derived in the proposed techniquesby comparing numerical solution with the quasi-analyticalsolution. By observing the error curve, we can obtain theoptimal number of elements in BEM. One numerical exampleis taken to demonstrate the accuracy and efficiency of theproposed estimation technique.