透過您的圖書館登入
IP:18.221.240.145
  • 會議論文

基於壓縮感知演算法與機器學習之語者辨識

Speaker Recognition based on Compressive Sensing and Machine Learning

摘要


本文實現語者辨識Speaker Recognition,其方法主要利用到機器學習Machine Learning(ML)以及壓縮感知原理Compressive Sensing,機器學習包含支撐向量機Support Vector Machine(SVM)、高斯混合模型-通用背景模型Gaussian mixture model-universal background model(GMM-UBM),壓縮感知原理則有貪婪算法Orthogonal Matching Pursuit(OMP)。

並列摘要


This thesis implements Speaker Identity, the method mainly uses Machine Learning (ML) and Compressive Sensing. The machine Learning includes Support Vector Machine(SVM) and Gaussian mixture model-universal background model (GMM-UBM). The principle of compressive sensing is greedy algorithm Orthogonal Matching Pursuit(OMP).

延伸閱讀