本研究介紹團塊理論與類神經-模糊推論模式之組合架構與推理程序。其中團塊理論之分類程序,係使歷史事件之特徵得到掌握並進而界定出系統內含之不同特性;其優點除可使推論式依據之規範數量客觀得到外,並能藉由模糊理論之觀念,結合已知事件之特質對未知事件予以預判,俾使水文序列之推估較爲精確;此外,研究亦利用改變推論函式型態的方式使模式結構進一步簡化。有關模式成效之檢測,係利用(1)定率函數輸出模擬及(2)清水溪暴雨事件流量序列之推估來進行;透過模式建構並應用顯示,對上述定率函數與水文序列之檢定與驗證,其結果皆呈良好,足見此模式之實用性。
This study presents a novel structure and reasoning process of an improved Artificial Neural-Fuzzy Inference Model (ANFIM). The ANFIM has the hybrid learning scheme, unsupervised and supervised schemes. The fuzzy min-max clustering is introduced to extract information from the input data. An advantage of the fuzzy min-max clustering is it s ability to determine the characteristics of each cluster. The efficiency and accuracy of the model are first tested by using a deterministic function. Then, the model is employed to build the rainfall runoff model of the Chingshuin River for fore casting the one-hour ahead flood. The results show that the ANFIM can simulate the deterministic function and predict flood accurately.