透過您的圖書館登入
IP:3.16.212.99
  • 期刊

表面增強拉曼光譜於黃耆中貝芬替殘留之檢測可行性評估

A Feasibility Study: Detection of Carbendazim Residues in Astragalus Using Surface-Enhanced Raman Spectroscopy

摘要


國人常用中藥材進行養生健體和食補益氣等目的,臺灣的中藥材以進口為主,因此應嚴格把關市售中藥材之安全性。衛生福利部設立邊境查驗制度,然用於檢驗的設備(如:GC/MS/MS)雖精確度佳,但耗資高昂、檢驗流程也較耗時,故難普及於大量樣本檢測。本研究透過表面增強型拉曼光譜建立目標農藥之拉曼指紋光譜及辨別其特徵波長,並建立其殘留於中藥之半定量分析。選擇分析中藥材樣本為黃耆,農藥殘留測試對象為常見殺菌劑貝芬替。拉曼光譜使用785 nm雷射光源進行實驗,以自適應疊代重加權懲罰最小二乘(Adaptive iteratively reweighted penalized least squares, airPLS)進行光譜基線校正,以建立貝芬替拉曼指紋圖譜。於實驗結果中,可判別出貝芬替之七支特徵峰值位置,分別位於624、771、1,003、1,222、1,269、1,459和1,514 cm^(-1)處。而於貝芬替殘留於黃耆之複合樣本中,可於771、1,003、1,222、1,269和1,514 cm^(-1)等五特徵峰值位置,於濃度3.34至13.41 ppm區間,以希爾方程式(Hill equation)建立達R^2=0.99之檢量線。本研究透過表面增強拉曼光譜以黃耆中之貝芬替殘留量進行試驗,成功確認該殺菌劑之拉曼指紋圖譜、特徵峰值位置,及建立藥劑殘留之半定量濃度檢量線。此方法有機會為中藥材中之農藥殘留檢驗,提供一較快速且降低檢驗成本的替代方案。

並列摘要


In Taiwan, people have the habit of using Chinese herbs to improve fitness and as nutrition supplements. Since the majority of Chinese herbs in Taiwan are imported, the safety of the marketed product is crucial and should be strictly controlled. The Ministry of Health and Welfare has set up a border control system to ensure the safety of imported herbs. Instruments of high accuracy, e.g., GCC/MS/MS, are used for inspection. However, due to the limitations of high operation cost and long processing time, these instruments cannot not be widely applied to a large number of samples. This study aimed to establish the Raman fingerprint spectrum of a target pesticide, identify the characteristic peaks, and develop semi-quantification methods for screening pesticide in Chinese herbs using SERS. The Chinese herb, astragalus, and a common fungicide, carbendazim, were selected as the tested targets. Raman spectroscopy with laser excitation at 785 nm was applied to take spectra measurement. Adaptive iteratively reweighted penalized least squares (airPLS) were used as the baseline correction methods to build the Raman fingerprint spectrum of carbendazim. From the experimental results, seven characteristic peak positions of carbendazim were identified, which were located at 624, 771, 1,003, 1,222, 1,269, 1,459, and 1,514 cm^(-1). For the carbendazim-astragalus mixed samples, the calibration curves of five peaks at 771, 1,003, 1,222, 1,269, and 1,514 cm^(-1) were developed with the R^2 = 0.99. This study successfully applied SERS to develop Raman fingerprint spectra for the carbendazim standard, identify its characteristic peaks, and build calibration curves for the residue in astragalus. The proposed method provides a promising tool for detecting pesticide residues in Chinese herbs faster and with lower cost.

參考文獻


陳儀驊、徐雅慧、劉宜祝、羅吉方。2011。中藥之農藥殘留檢驗 (VII)。食品藥物研究年報 (2):323-334。doi: 10.6945/ARFDR.201112.0325
Anastassiades, M., and W. Schwack. 1998. Analysis of carbendazim, benomyl, thiophanate methyl and 2, 4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction. J. Chromatogr. A. 825(1):45-54. doi: 10.1016/S0021-9673(98)00691-8
Barlas, N., G. Selmanoglu, A. Kockaya, and S. Songür. 2002. Effects of carbendazim on rat thyroid, parathyroid, pituitary and adrenal glands and their hormones. Hum. Exp. Toxicol. 21(4):217-221. doi: 10.1191/0960327102ht187oa
Fleischmann, M., P. J. Hendra, and A. J. McQuillan. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2):163-166. doi: 10.1016/0009-2614(74)85388-1
Furini, L. N., S. Sanchez-Cortes, I. López-Tocón, J. C. Otero, R. F. Aroca, and C. J. L. Constantino. 2015. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering. J. Raman Spectrosc. 46(11):1095-1101. doi: 10.1002/jrs.4737

延伸閱讀