透過您的圖書館登入
IP:18.191.209.202
  • 期刊
  • OpenAccess

A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams

並列摘要


A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is likely to be changed as time goes by. However, most of miming algorithms or frequency approximation algorithms for a data stream do not able to extract the recent change of information in a data stream adaptively. This paper proposes a sliding window method of finding recently frequent itemsets over an online data stream. The size of a window defines a desired life-time of the information of a transaction in a data stream.

被引用紀錄


Weng, M. T. (2014). 基於社群學習之自動化課程產生機制及影響力領域之計算 [doctoral dissertation, Tamkang University]. Airiti Library. https://doi.org/10.6846/TKU.2014.00749
黃俊維(2011)。學習元件評比暨動態週期性個人化推薦機制〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2011.00609
杜岳霖(2008)。基於CORDRA架構擴增之系統化再利用〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2008.00239
Liao, Z. X. (2013). 探勘智慧型手機中應用程式使用行為之研究 [doctoral dissertation, National Chiao Tung University]. Airiti Library. https://doi.org/10.6842/NCTU.2013.00476
張明龍(2008)。在資料串流環境中以時間性滑動視窗探勘封閉頻繁項目集〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200900539

延伸閱讀