透過您的圖書館登入
IP:18.191.43.140
  • 期刊

結合硫化鎘量子點和布拉格反射鏡提升氮化銦鎵多重量子井太陽能電池之光電轉換效率

Improving Efficiency of InGaN/GaN Multiple Quantum Well Solar Cells Using CdS Quantum Dots and Distributed Bragg Reflectors

摘要


本實驗成功結合硫化鎘量子點和布拉格反射鏡於氮化銦鎵多重量子井太陽能電池並有效提升其光電轉換效率。硫化鎘量子點可有效吸收紫外光並利用其光子下轉機制,將紫外光光子轉換為波長較長的光子,此機制可有效解決氮化銦鎵多重量子井太陽能電池表面銦錫氧化導電層會大量吸收紫外光子的問題,有效提升紫外光波段的外部量子效率。布拉格反射鏡可以將未被吸收完畢的光子,反射回多重量子井主動層,增加光路徑並提升光子被吸收的機率,解決多重量子井吸收層,吸收厚度不足的問題,可有效提升氮化銦鎵多重量子井太陽能電池整體的外部量子效率。最後我們結合了硫化鎘量子點和布拉格反射鏡於氮化銦鎵多重量子井太陽能電池,成功提升氮化銦鎵多重量子井太陽能電池之光萃取,最後整體的光電轉換效率,與最原始結構比較提升達20.7%。

並列摘要


This work demonstrates hybrid InGaN/GaN multiple quantum well (MQW) solar cells with enhanced power conversion efficiency using colloidal CdS quantum dots (QDs) and back-side distributed Bragg reflectors (DBRs). CdS QDs can absorb ultraviolet (UV) photons, which are strongly absorbed by indium tin oxide (ITO), and they emit photons with a longer wavelength. This process improves the collection of photon-generated carriers and is known as the luminescence down-shifting (LDS). Accordingly, CdS QDs can compensate for the poor utilization of UV photons in an ITO layer, enhancing the external quantum efficiency (EQE) in the UV range. The DBRs on the back of the solar cells can reflect photons of longer wavelengths back into the absorber layer, increasing the EQE (380-440nm). The combination of CdS QDs and DBRs results in broadband EQE enhancement, and yields an overall power conversion efficiency that is 20.7% better than that of a reference device without CdS QDs and DBRs.

延伸閱讀