研究目的:根據傳統經濟理論認定與通膨相關的變數,侷限了研究者發現其他重要變數的可能性。本文探討高維度資料集於通膨預測之應用,嘗試由下而上利用改良後之擴散指數預測法(diffusion index forecasting)預測台灣通膨。研究設計/方法:本研究以2000年至2021年間,近百個對於台灣通膨具有潛在影響力變數,採納Stock and Watson(2002b)之建議,事先將變數分為11大類後再進行預測,探討不同降維方法所萃取之潛在因子(latent factor)對模型預測力的影響。研究結果:本文發現使用監督式的降維方法有助於提升模型整體預測能力。研究限制/啟發:發現在分類前預測力最好的偏分量迴歸(PQR)於分類後建模之模型預測力有了更進一步提升。理論/實務/社會意涵:分析架構中可以探討預測通膨的關鍵變數,在不同的時空背景下11大類別相對重要性之消長與經濟意義,解構其中與後續政策干預攸關的變數說明。創見/價值:本研究也建構溫和與極端通膨(縮)預警模型,做為台灣央行制定貨幣政策時的參考依據。
Purpose - Past literature on Taiwan's inflation forecasting mostly confines to only few theory-specific variables, which limits the possibility of other potential important variables. In view of the superior forecasts from the diffusion index method via incorporating large dimension information. Design/methodology/approach - We generalize the framework to allow for a richer spectrum that encompass and compare various linear/nonlinear, supervised/unsupervised dimensionality reduction methods. We collected nearly 100 potential variables, from the period of 2000 to 2021, in order to extract the hidden common factors for inflation forecasting. Findings - Among the examined 4 approaches, our results indicate that the supervised partial quantile regression (PQR) dominate the other 3 approaches in anticipating inflation. Research limitations/implications - Once we further divide variables into 11 categories and extract category-specific factors for the subsequent forecasting as in Stock and Watson (2002b), we found that the predictability of PQR became even better. Practical implications/Social implications - We can not only visualize the importance of each category in 1-step ahead inflation projection across time. Originality/value - We can establish an early warning model for monitoring the arrival of radical inflation/deflation and promptly adjusting for policy interventions.