透過您的圖書館登入
IP:216.73.216.23
  • 期刊

探索預測台灣通膨隱而未現的重要因子-監督式降維模型的實證

Disentangling Latent Factors for Inflation Forecasting in Taiwan via Supervised Dimension-Reduction Approach

摘要


研究目的:根據傳統經濟理論認定與通膨相關的變數,侷限了研究者發現其他重要變數的可能性。本文探討高維度資料集於通膨預測之應用,嘗試由下而上利用改良後之擴散指數預測法(diffusion index forecasting)預測台灣通膨。研究設計/方法:本研究以2000年至2021年間,近百個對於台灣通膨具有潛在影響力變數,採納Stock and Watson(2002b)之建議,事先將變數分為11大類後再進行預測,探討不同降維方法所萃取之潛在因子(latent factor)對模型預測力的影響。研究結果:本文發現使用監督式的降維方法有助於提升模型整體預測能力。研究限制/啟發:發現在分類前預測力最好的偏分量迴歸(PQR)於分類後建模之模型預測力有了更進一步提升。理論/實務/社會意涵:分析架構中可以探討預測通膨的關鍵變數,在不同的時空背景下11大類別相對重要性之消長與經濟意義,解構其中與後續政策干預攸關的變數說明。創見/價值:本研究也建構溫和與極端通膨(縮)預警模型,做為台灣央行制定貨幣政策時的參考依據。

並列摘要


Purpose - Past literature on Taiwan's inflation forecasting mostly confines to only few theory-specific variables, which limits the possibility of other potential important variables. In view of the superior forecasts from the diffusion index method via incorporating large dimension information. Design/methodology/approach - We generalize the framework to allow for a richer spectrum that encompass and compare various linear/nonlinear, supervised/unsupervised dimensionality reduction methods. We collected nearly 100 potential variables, from the period of 2000 to 2021, in order to extract the hidden common factors for inflation forecasting. Findings - Among the examined 4 approaches, our results indicate that the supervised partial quantile regression (PQR) dominate the other 3 approaches in anticipating inflation. Research limitations/implications - Once we further divide variables into 11 categories and extract category-specific factors for the subsequent forecasting as in Stock and Watson (2002b), we found that the predictability of PQR became even better. Practical implications/Social implications - We can not only visualize the importance of each category in 1-step ahead inflation projection across time. Originality/value - We can establish an early warning model for monitoring the arrival of radical inflation/deflation and promptly adjusting for policy interventions.

參考文獻


侯德潛、徐千婷 (2002)。我國通貨膨脹預測模型之建立。中央銀行季刊,24(3),9–40。 黃朝熙 (2007)。台灣通貨膨脹預測。中央銀行季刊,29(1),5–29。 葉盛、田慧琦 (2004)。台灣的物價情勢:影響因素探析與計量實證模型應用。中央銀行季刊,26(4),69–115。 劉淑敏 (2003)。我國躉售物價對消費者物價之影響效果分析。中央銀行季刊,25(2),37–48。
Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31–56. https://doi.org/10.1016/S1386-4181(01)00024-6
Anowar, F., Sadaoui, S., & Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Computer Science Review, 40, 100378. https://doi.org/10.1016/j.cosrev.2021.100378
Atkeson, A., & Ohanian, L. E. (2001). Are Phillips curves useful for forecasting inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 25(1), 2–11. https://doi.org/10.21034/qr.2511
Bai, J., & Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.

延伸閱讀