透過您的圖書館登入
IP:18.119.157.39
  • 期刊

Deep Eutectic Solvent Assisted Synthesized Bimetallic Nano-Sponges Integrated with MoS_2 as an Efficient Electrocatalyst for Water Splitting

以深共晶溶劑輔助合成與二硫化鉬結合的雙金屬奈米海綿作為高效率的水裂解電催化劑

摘要


Hierarchical nano/micro-structured photocatalysts design draws attention to enhance photocatalytic performances. Deep eutectic solvents (DESs) have been used as a green sustainable media to act as both solvent and structural inducing agent in the synthesis of hierarchical nanomaterials. In this work, the first time we report DESs assisted synthesis of sponge-like structured Au, Au-Ag bimetallic nano-sponges integrated with MoS_2 (Au-Ag/MoS_2) composites were successfully prepared using a simple wet-chemical method as a good electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts in acidic medium. The OER and HER activity showed on Au: Ag (1:1)/MoS_2 has been achieved an enhanced photocatalytic activity with an overpotential of 320 mV for OER and 400 mV for HER vs. RHE in 1M H_2SO_4 electrolyte at the current density of 10 mA cm^(-2). The structural and optical properties of composites were successfully studied through X-ray diffraction, UV-Visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and FE-SEM. The Au-Ag nano-sponges acted as a co-catalyst with MoS_2 semiconductor materials reveal the extended lifetime of charges and enhanced the separation efficiency of excited electron-hole pairs, which is helpful to enhance the electrocatalytic water splitting.

並列摘要


層狀奈米/微結構光催化劑的設計可提高光催化性能已引發各界重視。深共晶溶劑(DESs)可視為為一種綠色永續的介質,可在奈米材料的合成中扮演著溶劑和結構誘導劑的雙重角色。在本研究中,我們首次提出以DESs輔助合成具海綿狀結構的金奈米海綿,金-銀雙金屬奈米海綿與二硫化鉬結合(Au-Ag/MoS_2)複合材料。此複合材料已成功使用簡單的濕化學法製備,此電催化劑可在酸性溶液中進行氧氣析出反應(OER)和氫氣析出反應(HER)。在電流密度為10 mA cm^(-2)的1M H_2SO_4電解液中,Au:Ag(1:1)/MoS_2可有效的增強光催化活性,其OER的過電位為320 mV, HER的過電位為400mV。透過X射線繞射、紫外-可見光漫射反射光譜、光致發光光譜和場發射掃描式電子顯微鏡等技術對此複合材料的結構和光學性能進行了研究。結果顯示,以Au:Ag奈米海綿與MoS_2半導體材料組成的共同催化劑(co-catalyst),可以延長荷電壽命,提高激發的電子-電洞對的分離效率,將有利於水裂解的電催化。

並列關鍵字

奈米海綿 共催化劑 電催化劑 水裂解

延伸閱讀