透過您的圖書館登入
IP:18.188.40.207
  • 期刊

應用統計方法評估鋰電池塗布均勻性之檢驗程序

Evaluating Inspection Procedure for Uniform Coating of Lithium Batteries Using Statistical Methods

摘要


近年來在節能減碳推動的趨勢下,各國紛紛致力於電動車的發展來滿足碳排放的成效。在目前電動車的成本結構中,鋰離子電池占整體成本大約四成左右。相較於傳統乾電池,鋰離子電池具有儲存壽命長、使用溫度範圍廣、高功率與高能量密度等優點。在鋰離子電池的製造過程中,使用適當的儀器,評估正、負極材料在極層塗布後經由滾輪輾壓對極層材料內部的活性物質、導電材、黏著劑之間的壓實程度,可以有效地瞭解製程狀態以確認產品品質現況。本研究所提出之方法,是先利用量測系統分析,篩選出適當的量測儀器。利用製程能力指標C_p和C_(pk),鑑別出需要改善的塗布方式。在應用5M1E(5M指measurements、material、man、methods與machines,1E指environment)要因分析後,發現滾動水平異常。本研究利用統計方法驗證改善措施之有效性,並水平展開至其他設備。同時,本研究也將改善措施標準化,並修訂設備維修操作規範。改善前的C_p為2.46、C_(pk)為0.55,而改善後的C_p為3.22、C_(pk)為3.07,皆超過1.67之製程能力要求,結果有顯著改善。本研究的方法對協助工程師評估量具與改善製程方面具有很高的實用價值。

並列摘要


In recent years, countries worldwide have been committed to reducing carbon emissions and promoting energy conservation, leading to the development of electric vehicles. Lithium-ion batteries constitute about 40% of the cost structure of electric vehicles and offer several advantages over traditional dry batteries, such as long storage life, wide temperature range, high power, and high energy density. To ensure the quality of the electrode layer material in lithium-ion battery manufacturing, appropriate instruments must be used to evaluate the compaction between the active material, conductive material, and adhesive, which can be achieved by rolling the positive and negative electrode materials after coating. This study proposes using a measurement system analysis to select suitable measuring instruments and process capability indicators, such as C_p and C_(pk), to identify coating methods that require improvement. By conducting a 5M1E (5M: measurements, material, man, methods, and machines; 1E: environment) analysis, the study discovered that the rolling level was abnormal and implemented statistical methods to verify the effectiveness of the proposed improvement measures. This study also standardized the improvement measures and revised the equipment maintenance operation specifications afterward. Before the improvements, the C_p and C_(pk) values were 2.46 and 0.55, respectively. The C_p increased to 3.22, and the C_(pk) reached 3.07 after our improvements, surpassing the process capability requirement of 1.67 and resulting in a significant improvement in the manufacturing process. The method proposed by this study has practical value in assisting engineers in evaluating measuring tools and improving manufacturing processes.

參考文獻


史天元,2008,解析度與精度,地籍測量:中華民國地籍測量學會會刊,27(3),61-80。doi:10.29609/YYWYLL.200809.0004
林錫鴻,2005,六標準差水準與製程能力分析關係模式探討,品質月刊,41(9),71-72。doi:10.29999/QM.200509.0016
馬嵩華、田凌,2015,鋰電池極片輥壓機剛度分析與結構優化,中國機械工程,26(6),803-808。doi:10.3969/j.issn.1004-132X.2015.06.018
Antony, J. and Banuelas, R., 2002, Key ingredients for the effective implementation of Six Sigma program, Measuring Business Excellence, 6(4), 20-27. doi:10.1108/13683040210451679
Chen, K. S., Huang, M. L. and Li, R. K., 2001, Process capability analysis for an entire product, International Journal of Production Research, 39(17), 4077-4087. doi:10.1080/00207540110073082

延伸閱讀