透過您的圖書館登入
IP:52.15.210.12
  • 期刊

深潛多球加勁型壓力殼結構最佳化設計之探討

A Study of Structural Optimum Design on Deep - Diving Multiple Intersecting Spheres Pressure Hulls

摘要


為了提昇載具整體結構效率、降低能源消耗、增加酬載、航速、續航力及潛深的需求,以達成高強度、輕量化壓力殼結構的設計目的,應用創新設計之多球加勁型壓力殼(multiple intersecting spheres stiffened pressure hull)結構取代傳統肋骨加勁壓力殼結構,已成為新近設計主流之一。本文的目的在進行多球加勁型壓力殼結構最佳化設計之探討,針對HY80、HY100、HY140鋼材及Ti-6Al-4V合金等不同材料之多球形壓力殼結構,考慮在不同潛深下,以整體壓力殼結構之最小浮力因子為設計目標,並且滿足壓力殼殼板與加強肋間變形一致性、壓力殼整體挫曲強度、局部挫曲強度、殼板降伏強度、加強肋降伏、挫曲強度以及符合人因工程與空間需求限制下,使用線性外延內罰函數法(linear extended interior penalty function method,EIPF)結合DFP變尺度法(Davidon-Fletcher–Powell variable metric method, DFP)進行最佳化設計。最後,本文探討操作潛深對多球形壓力殼結構最佳構形設計及最佳設計參數之影響,同時並進行操作潛深對多球形壓力殼最佳結構強度因子之效應分析,以及材料成本與結構效率之設計方案。本文研究結果顯示最佳多球形壓力殼結構之下潛深度與其最佳浮力因子成正比關係,最佳結構效率是以比強度與比勁度高者為佳。

並列摘要


In order to provide a underwater vehicle with a low enough weight/volume ratio to allow the requiredpayloads, a deep-diving multiple intersecting spheres (MIS) pressure hull will be a new design concept instead of classical stiffened cylindrical pressure hulls. This paper concerns with optimum design of deep-diving MIS pressure hulls subjected to structural buckling strength constraint, the material yielding strength constraint, spatial and human engineering requirement constraints under hydrostatic pressure. The present optimal design problem involves determining the best structural configuration to minimize the buoyancy factor of the pressure hull. A powerful optimization procedure combined the EIPF method with the DFP method to solve the present nonlinear constrained optimization design problem of the MIS pressure hull in this work. Finally, a typical optimal stiffened MIS pressure hull is presented to investigate the effects of weight/volume ratio in relation to maximum operating depth for different kinds of hullmaterial and the effects of structural strength factors in relation to maximum operating depth for differentkinds of hull material. Results reveal that the higher weight/volume ratio implies a larger diving depth and the higher yielding strength/density ratio implies a better structural efficiency(Manuscript received Apr. 8, 2003, Accepted for publication Sep. 22, 2003)

延伸閱讀