透過您的圖書館登入
IP:3.144.112.72
  • 期刊

投擲運動數學模型之研究

A Study for a Mathematical Model of the Projectile Motion

摘要


本文之主要目的是應用運動學基本原理,建立無阻抛體運動軌跡之數學模型。文中首先根據拋物體運動學的觀念,推導在忽略空氣阻力情況下拋射體抛射距離與抛射高度之運動方程式;然後應用隱函數微分理論,由所得之運動方程式求得最佳拋射角、最大拋射距離、拋射初速度與投擲出手之拋射高度的簡單關係式,並證實了當拋射高度與抛射初速度一定時,僅有一組最大拋射距離與最佳拋射角的解;最後利用微電腦由所得之關係式列出最大拋射距離與最佳拋射角的數值,以做為投擲運動(鉛球、鏈球)科學運動訓練的工具。

並列摘要


This paper presents a mathematical model of the projectile motion for physical education. Based on the principle of kinematics, the equation of projectile motion is developed. Then, by using differential calculus, a simple expression of relationships among the best angle of delivery, the maximum distances of delivery, the initial velocity of delivery, and the height of delivery point is introduced. According to this expression, we conclude that the best angle of delivery and the maximum distances of delivery are only related to the height of delivery and initial velocity of delivery. Finally, a diagram for the values of the maximum distance of delivery and the best angle of delivery are developed by computer. The results are used as a tool for the scientific physical education in the projectile motion (as shot put and hammer throw).

被引用紀錄


古國宏(2001)。以平跳及高跳出發探討各入水參數對截面積及滑行期的影響〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1904200711424792

延伸閱讀