透過您的圖書館登入
IP:3.15.231.69
  • 期刊

鈦及鐵奈米粉塵最小點火能量研究

Minimum Ignition Energy of Titanium and Iron Nanoparticle Powders

摘要


奈米粉塵的製造過程中潛藏了許多火災爆炸的危機,而國內外對這方面的災害預防與防護措施的研究非常稀少,本研究以鈦粉1~3μm、10μm、35μm、75μm、40~100μm、35nm、75nm、100nm八種不同粒徑及鐵粉100μm、15nm、35nm、65nm四種不同粒徑的金屬粉末為測試的材料,利用最小點火能量測試儀來測試其最小點火能量,經由實驗數據可知鈦粉粒徑小於1~3μm及鐵粉粒徑小於65nm時,其最小點火能量均小於1mJ,極容易被引燃,因此於製造使用時,均須注意其受靜電、撞擊、明火等影響。

並列摘要


Many nanoparticle manufacturing processes are at risk for fires and explosions. This study examines titanium nanoparticles in eight diameter ranges (35nm, 75nm, 100nm, 1-3μm, 10μm, 35μm, 75μm, and 40-100μm) and iron nanoparticles in four diameter ranges (15nm, 35nm, 65nm, and 100μm). The goal of this study is to measure the minimum ignition energy (MIE) of each nanoparticle powder using a 1.2L modified Hartmann apparatus. Based on the experimental data, titanium paticle less than 1-3μm and iron particles less than 65μm with have minimum ignition energies of less than 1mJ, which means they are extremely combustible. Therefore, during the manufacture of these nanoparticle powders, it is imperative to take precautionary measures against flammability hazards such as electrostatic sparks and collisions.

參考文獻


Center for Chemical Process Safety (CCPS)(2005).Guidelines for Safe Handling of Powders and Bulk Solids, American Institute of Chemical Engineering.New York:
Hung-Chun Wu,Hsin-Jung Ou(2006).Explosion Prevention Study of Attrition Process for Nanomaterials.Taipei Taiwan:Institute of Occupational Safety and Health, Council Of Labor Affairs Executive Yuan.
R. Birringen(1989).Nanocrystalline materials. Materials Science and Engineering.117,33-43.
R P Andres,R S Arerback(1989).Research opportunities on clusters and cluster-assembled materials-A Department of Energy, Council on Materials Science Panel Report.J Mater Res.4,704-736.
Ron Dagani(1992).Nanostructured Materials Promise to Advance Range of Technologies.C&EN, Nov.23

延伸閱讀