透過您的圖書館登入
IP:216.73.216.100
  • 期刊

基因及蛋白體學於生殖醫學之應用

Application of Genomics and Proteomics in Reproductive Medicine

摘要


西元1966年科學家首次成功建立胎兒羊水細胞染色體核型圖,開啟了產前胎兒遺傳學的發展歷史,自此之後,各式各樣的產前診斷技術相繼被開發出來,像是母體血清生化蛋白質指標、螢光原位雜合分析、聚合酶鏈鎖反應、基因序列定序,以及近期應用廣泛的基因晶片等等。而隨著臨床檢驗資訊的累積及基因體資料庫的建立,人類基因體與蛋白體學則逐漸成為目前大多數遺傳檢驗技術發展的基礎,例如微陣列基因晶片,從一開始晶片探針的設計到最後的染色體套數分析,均需仰賴基因體與遺傳資訊學知識的交相運用,才能提升產前(乃至胚胎著床前)遺傳檢驗的正確性。而近來,科學家發現懷孕媽媽的血液中存有微量的游離胎兒DNA,提供了發展高安全性之非侵入式產前遺傳檢測一個嶄新的研究方向,此檢測結合具高通量效能的次世代定序技術,預計將成為未來人類生殖醫學上重要的遺傳檢測技術發展平台。

並列摘要


The history of prenatal genetics rapidly evolves after the first fetal karyotype was successfully prepared from the amniotic fluid cells in 1966. Since then, a variety of testing for prenatal diagnosis have been developed, including screening of fetal aneuploidy by maternal blood serum biomarkers, cytogenetics, fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), DNA Sanger sequencing, and microarray gene chips. Most of the genetic testings relied on the knowledge of human genomics and proteomics. For example, genomic and bioinformatic expertise are prerequisites when microarray-based comparative genomic hybridization (array CGH) is used in prenatal (and even preimplantation) diagnosis when designing the DNA probes, and when determining which kind of genomic copy number changes is of clinical relevance. Of noted, recent studies identifying a tiny amount of cell-free fetal DNA in maternal blood has provided a novel thread for implementation of noninvasive prenatal testing (NIPT) of fetal genetic syndromes. It is believed that high throughput next generation sequencing (NGS) will be an imperative genetic testing platform in future reproductive medicine.

並列關鍵字

karyotype analysis array CGH NGS PGT reproductive medicine

被引用紀錄


盧香君(2016)。孕婦接受羊膜穿刺或非侵入性胎兒染色體篩檢抉擇動機及遺傳諮詢需求之探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201610127

延伸閱讀