透過您的圖書館登入
IP:216.73.216.100
  • 期刊

A Tripartite Tensor Decomposition Fold-in for Social Tagging

並列摘要


The tripartite tensor decomposition (TTD) model reveals the latent relationship among items, tags and users in social tagging systems in terms of a low order tensor obtained from the high-index sparse data space with the tensor dimensionality reduction technique. The Tripartite decomposition recommendation algorithms can produce high quality recommendations, but have to undergo expensive tensor decomposition steps when new users, new tags, or new items come in, which is significant in light of the tremendous growth in numbers of users, tags and items. In this paper, we present fold-in algorithms for Tripartite tensor decomposition to deal with the new users problem. We evaluate the fold-in algorithms experimentally on several datasets and the results demonstrate the effectiveness of the algorithm.

被引用紀錄


Huang, Y. J. (2017). 低功耗電阻式記憶體之元件設計與其特性研究 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201700727
曹淳博(2007)。室溫離子熔液應用於無機合成金屬草酸磷酸-甲基磷酸之研究與探討〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0207200917344560

延伸閱讀