透過您的圖書館登入
IP:3.144.242.158
  • 期刊

Graph Theory-based Fast Linear Iterative Clustering Multi-feature Fusion Model for Art Image Segmentation

摘要


Image segmentation is the pre-processing stage of image analysis. It divides the image into different re-gions for the subsequent image analysis. The traditional segmentation algorithms can not deal with the images with complex background and uneven gray level effectively. Especially, for the art images seg-mentation with high resolution, the distinguishment degree between foreground of the object to be seg-mented and the background is small, which can lead to the incomplete segmentation effect. Therefore, this paper proposes a graph theory-based Fast Linear Iterative Clustering (FLIC) multi-feature fusion model for art image segmentation. First, the FLIC segmentation algorithm is used to pre-segment the su-perpixel of raw image. Second, the HOG feature, Lab color feature and spatial location feature are ex-tracted. Third, A multi-feature fusion strategy based on superpixel is designed. Four, the fast image seg-mentation based on multi-feature fusion is realized by using the graph theory. The graph theory is opti-mized by time domain convolution. Finally, the comparison experiments with other state-of-the-art methods are conducted on the public datasets: Berkeley Segmentation Dataset and Culture Gene Online . The results show that the proposed algorithm has better effect in terms of evaluation indexes (USE, BR, ASA and Time).

延伸閱讀