透過您的圖書館登入
IP:3.144.111.49
  • 期刊

碳化矽/聚丙烯腈之奈米複合纖維材料於電磁波特性研究

Studies on electromagnetic properties of silicon carbide/polyacrylonitrile nanofiber

摘要


本研究為利用靜電紡絲技術製備吸收電磁波之碳化矽/聚丙烯腈(SiC/PAN)複合奈米纖維材料。本實驗將聚丙烯腈(Polyacrylonitrile, PAN)與在二甲基甲醯胺(N,N-dimethyformamide, DMF)溶液中均勻混合後,藉由改變四種製程參數:PAN濃度、收集板電壓、注射速率及收集距離,探討這些參數對PAN奈米纖維形貌及直徑的影響。合成SiC/PAN複合奈米纖維部份,分別添加不同重量百分比濃度的SiC奈米顆粒至前驅溶液中,再以前述PAN條件進行電紡製備。同時,藉由不同重量百分比濃度的SiC/PAN複合奈米纖維進行電磁波吸收之探討研究。在本研究中使用掃描式電子顯微鏡觀察其纖維形貌與直徑尺寸、X光繞射分析儀作SiC/PAN晶相鑑定、熱重分析儀觀察樣品之重量變化及穿透式電子顯微鏡之微觀結構鑑定及四點探針電性分析,再利用向量網路分析儀,進行雷達波頻段(3-18 GHz)之電磁特性研究。實驗結果顯示,PAN奈米纖維在濃度為10 wt.%、電壓為20 kV、注射速率為0.025 ml/min及收集距離為15 cm,可獲得較均勻直徑的PAN奈米纖維。而在添加15 wt.%的SiC奈米顆粒後,表面粗糙度增加,這表示SiC奈米顆粒開始凝聚,但與20 wt.%的相較之下,沒有明顯的碳化矽奈米顆粒團聚。常溫量測時,A2隨著厚度的增加最大反射損失隨之增加,並會往低頻移動,厚度為8 mm時,於13.79-17.54 GHz頻率範圍內,反射損失小於-10 dB之頻寬為3.75 GHz,雷達頻率在15.29 GHz時最大反射損失為-38.19 dB。

並列摘要


In this study, silicon carbide/polyacrylonitrile (SiC/PAN) composite nanofiber material for absorbing electromagnetic waves was prepared by electrospinning. In this experiment, polyacrylonitrile (PAN) was mixed with dimethylformamide (N, N-dimethylformamide, DMF) solution by changing the four process parameters: PAN concentration, collecting plate voltage, feeding rate, and the effects of these parameters on the morphology and diameter of PAN nanofibers were discussed. Synthesis of SiC/PAN composite nanofiber fraction, respectively, adding different concentrations of SiC nanoparticles into the precursor solution, and then the above PAN conditions for electrospinning. At the same time, the electromagnetic wave absorption of SiC/PAN composite nanofibers with different weight percentages was studied. In this study, the fiber morphology and diameter were observed by scanning electron microscopy. The X-ray diffraction apparatus was used to identify the SiC/PAN phase. The weight change of the sample was followed by thermogravimetric analysis and the microstructure of the penetrating electron microscope Identification and four-point probe electrical analysis, and then use the vector network analyzer, the radar wave band (3-18 GHz) of the electromagnetic properties of the study. The results showed that PAN nanofibers could obtain more uniform diameter PAN nanofibers at a concentration of 10 wt%, a voltage of 20 kV, a feeding rate of 0.025 ml/min, and a collection distance of 15 cm. The surface roughness increases with the addition of 15 wt% SiC nanoparticles, which means that the SiC nanoparticles begin to agglomerate, but there is no apparent aggregation of silicon carbide nanoparticles compared with 20 wt%. At room temperature measurement, the sample number (A2) increases with the thickness of the maximum reflection loss increases, and will move to low frequency, the thickness of 8 mm, in the 13.79-17.54 GHz frequency range, the reflection loss is less than -10 dB of the bandwidth of 3.75 GHz, the maximum reflection loss at the radar frequency of 15.29 GHz is - 38.19 dB.

參考文獻


S. Kciuk, M. Kciuk, R. Turczyn(2009), "Magnetorheological characterisation of carbonyl iron based suspension," J.AMME., Vol. 33, Pages 135-141.
N. P. Singh, J. L. Phillips, H. Lai(2009), "Electromagnetic fields and DNA damage," Phys.Rev.Lett., Pages 107-118.
丁冬海、羅發、周萬城、史毅敏、周亮(2014), "高溫雷達吸波材料研究現狀與展望," 無機材料學報。
邢麗英等編著(2006), "隱形材料,"新文京開發出版股份有限公司。
H. B. Kim, I. B. Jang, J. Y. Lee, J. L. You, H. J. Choi and M. S. Jhon(2005), "Role of organic coating on carbonyl iron suspended particles in magnetorheological fluid," J. Appl. Phys., Vol. 97, Pages 10Q912-10Q912-3.

延伸閱讀