透過您的圖書館登入
IP:18.191.240.59
  • 期刊

銑削加工參數對工件表面粗糙度之影響

The Effects of Milling Parameters on the Surface Roughness of the Workpiece

摘要


本論文研究採用鎢鋼鋁用銑刀作為切削刀具,藉由改變轉速、進給率、銑削深度、銑削方向等四項參數(控制因子),藉以獲得不同的工件表面粗糙度值。透過田口方法的分析,依據四個控制因子,二個水準(最大值、最小值;正轉、逆轉)製作田口直交表。因子效應為正,代表該因子變化時對表面粗糙度值而言有加大的趨勢;因子效應為負,則有減小的趨勢。當目標為使表面粗糙度減至最小,則找出各因子貢獻最小的組合。從鋁和銅表面粗糙度的因子效應分析,本論文的實驗結果顯示趨勢完全相同,惟鋁材的最小的參數組合卻與分析參數組合不符;銅材的加工則完全吻合.進一步檢討鋁的最小參數組合差異發現,在控制因子之銑削深度與銑削方向並不相同,使用圖形斜率分析出的結果,顯示鋁材在加工時,銑削方向不管是正轉或逆轉,對於表面粗糙度的影響相當微小,而且銑削深度與銑削方向具有較大的交互作用。

並列摘要


This paper is to study the use of tungsten carbide end mill for aluminum as cutting tools, by changing four parameters (control factors) such as rotating speed, feed rate, milling depth, and milling direction to obtain different surface roughness of the workpiece. Through the analysis of Taguchi method, the Taguchi orthogonal array was made based on four control factors and two levels (maximum and minimum; forward and reverse). If the factor effect is positive, it means that the surface roughness has a tendency to increase when the factor changes; if the factor effect is negative, it has a decreasing trend. When the goal is to minimize the surface roughness, find the combination with the smallest contribution from each factor. From the factor effect analysis of aluminum and copper surface roughness, the experimental results of this paper show that the trends are exactly the same, but the minimum parameter combination of aluminum does not match the analysis parameter combination; the processing of copper is completely consistent. Further review the minimum parameters of aluminum The combination difference found that the milling depth of the control factor is not the same as the milling direction. The results of the graph slope analysis show that the aluminum is processed, whether the milling direction is forward or reverse, and the effect on the surface roughness is quite small, and the milling depth and the milling direction have a greater interaction.

參考文獻


陳家輝 (2007)。6061-T6 鋁合金高轉速銑削加工參數探討。國立中興大學機械工程系碩士論文,DOI:10.6845/NCHU.2007.00554。
Bhosale, K. K., Patil, V. P., Chavan, R. R., Mane, V. V., Sakharkar, A. R., Pawar, C., K., Bhole, A. R., & Shinde, S. S. (2018). Parameters Optimization of CNC Machining using Taguchi Methodology, International Journal for Research in Applied Science & Engineering Technology, 6(4), 4594-4598. DOI:10.22214/ijraset.2018.4753
Kiswanto, G., Azmi, M., Mandala, A., & Ko, T. J. (2019). The effect of machining parameters to the surface roughness in low speed machining micro-milling Inconel 718. IOP Conference Series: Materials Science and Engineering, 654, 012014. DOI:10.1088/1757-899X/654/1/012014
Moayyedian, M., Mohajer, A., Kazemian, M. G., Mamedov, A., & Derakhshandeh, J. F. (2020). Surface roughness analysis in milling machining using design of experiment. SN Applied Sciences, 2:1698. DOI:10.1007/s42452-020-03485-5
Ozcelik, B., & M. Bayramoglu, M. (2006). The statistical modeling of surface roughness in high-speed flat end milling. International Journal of Machine Tool & Manufacture, 46(12-13), 1395-1402. DOI:10.1016/j.ijmachtools.2005.10.005

延伸閱讀