透過您的圖書館登入
IP:18.221.83.96
  • 期刊

灰色GM(1,1)模型預測我國勞保職災給付研究

The Prediction of the Taiwan Occupational Accident Insurance Payments by GM(1,1) Model

摘要


本研究依據勞保局之「歷年職業災害勞保給付統計年報」資料,應用灰系統理論之灰預測GM(1,1)模型,期望建立一能應用於我國勞工保險職業災害給付千人率預測之模型。職業災害保險總給付、傷病給付及失能給付千人率,五期至十期的滾動建模均可得到非常良好的預測結果,其預測精準度都大於90%以上。職業災害死亡給付千人率的灰色預測準確性雖較差,但大致而言,以低於八期之建模數據仍可至少在合格範圍內。以本研究之預測模型預測職業災害保險給付千人率未來趨勢,總給付、失能給付及死亡給付呈現下降趨勢,只有傷病給付有上升情形。

並列摘要


This study applied GM (1,1) model of grey system theory to establish the forecasting models of the ratio per thousandth for the labor insurance payments of occupational accidents in Taiwan based on the annual statistics of Bureau of Labor Insurance. The ratio per thousandth of the total benefit payment, the benefit payment on injuries or illness, and the benefit payment on disability represent excellent results in the rolling forecast modeling on 5 to 10 periods. As to the benefit payment on death, the accuracies of grey prediction on the ratio per thousandth are generally acceptable on less than 8 periods. Predicting the trend of insurance payments of occupational accidents, the ratio per thousandth is going down on the total payment, disability payment and death payment, and rising on the injuries or illness payment.

被引用紀錄


林宜貞(2014)。應用灰預測建立茶園面積預測系統之研究〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2014.00031
Chen, Y. Y. (2014). 少數據資料下灰色區間時間數列預測之研究 [doctoral dissertation, I-SHOU University]. Airiti Library. https://doi.org/10.6343/ISU.2014.00292
陳萱蓁(2016)。灰預測應用於已婚女性就業之研究〔碩士論文,義守大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0074-0808201611360300

延伸閱讀