透過您的圖書館登入
IP:13.59.235.245
  • 期刊

利用有效率之演算法探勘數量關聯規則

Using Efficient Algorithms for Mining Quantitative Association Rules

摘要


在本篇論文中,我們以包裹資料庫中之交易資料為探勘的資料來源,每一筆交易資料包含有消費者曾經購買過的項目與其數量,分別從兩方面來探勘數量關聯規則:一是修改FP-tree演算法來擷取數量關聯規則,從實驗評估中顯示,我們所提出之演算法的執行效率優於MQA-1演算法[1, 9];二是以某一項目為探勘的目標,相較於前面的演算法,我們提出一個更有效率的演算法來擷取包含有此一項目的數量關聯規則。

並列摘要


In this paper, we use transaction data in bag databases as the source data of mining, and each transaction data contains a consumer ever purchased items and the quantity of those items. We mine quantitative association rules from two aspects. One is to modify the FP-tree algorithm to mine quantitative association rules. The experiments show that the performances of our algorithm are faster than the MQA-1 algorithm [1, 9]. The other is to let one transaction item as the target of mining, and to present a more efficient algorithm to mine quantitative association rules which contain the item than the preceding algorithm.

被引用紀錄


林煥為(2009)。行車轉彎之行為模式辨認〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2907200912030800

延伸閱讀