透過您的圖書館登入
IP:18.118.20.90
  • 期刊
  • OpenAccess

Stress Analysis of Nonhomogeneous Rotating Disc with Arbitrarily Variable Thickness Using Finite Element Method

並列摘要


Rotating discs with variable thickness and nonhomogeneous material properties are frequently used in industrial applications. The nonhomogenity of material properties is often caused by temperature change throughout the disc. The governing differential equation presenting this problem contains many variable coefficients so that no possible analytical closed form solution for this problem. Many numerical approaches have been proposed to obtain the solution. However, in this study the Finite Element Method (FEM), which presents a powerful tool for solving such a problem, is used. Thus, a turbine disc modeled by using ax symmetric finite elements was analyzed. But, in order to avoid inaccuracy of the stress calculation quite fine meshing is implemented. The analysis showed that maximum displacement occurs at the boundary of the disc, either at the outer or inner boundary, depending on the loadings. The maximum radial stress occurs at an area in the middle of the disc which has the smallest thickness. In this study, rotational blade load was shown to give the largest contribution to the total displacement and stress. Also, the radial displacement and stress in a disc with variable thickness are found to be affected by the contour of the thickness variation. In general, the results obtained show excellent agreement with the published works.

延伸閱讀